Logical Concepts vs. Logical Operations
Two Traditions of Logic Re-revisited
DOI:
https://doi.org/10.15173/jhap.v9i11.5010Abstract
In what follows, the difference between Frege’s and Schröder’s understanding of logical connectives will be investigated. It will be argued that Frege thought of logical connectives as concepts, whereas Schröder thought of them as operations. For Frege, logical connectives can themselves be connected. There is no substantial difference between the connectives and the concepts they connect. Frege’s distinction between concepts and objects is central to this conception, because it allows a method of concept formation which enables us to form concepts from the logical connectives alone. Schröder in contrast unifies the distinction between concepts and objects (which he calls elements and relatives), but keeps the distinction between logical connectives and what they connect. It will be argued that Frege’s particular way of perceiving logical connectives is crucial for his foundational project.
References
Badesa, Calixto, 2004. The Birth of Model Theory. Princeton, NJ: Princeton University Press.
Dreben, Burton and Jean van Heijenoort, 1986. “Introductory Note to 1929, 1930 and 1930a.” In Kurt Gödel: Collected Works, edited by Solomon Feferman, pp. 44–60. Oxford: Oxford University Press.
Floyd, Juliet and Sanford Shieh, eds., 2001. Future Pasts: The Analytic Tradition in Twentieth Century Philosophy. New York: Oxford University Press.
Frege, Gottlob, 1880-81 [1979]. “Boole’s Logical Calculus and the Concept-Script.” In Frege (1979), pp. 9–46.
———, 1882 [1972]. “On the Aim of the Conceptual Notation.” In Frege (1972), pp. 90–100.
———, 1884 [1953]. The Foundations of Arithmetic, Second revised edition. Oxford: Blackwell.
———, 1895 [1984]. “A Critical Elucidation of some Points in E. Schröder, Vorlesungen über die Algebra der Logik.” In Frege (1984), pp. 210–28.
———, 1972. Conceptual Notation and Related Articles, edited by Terrell Ward Bynum. Oxford: Clarendon Press.
———, 1979. Posthumous Writings, edited by Hans Hermes, Friedrich Kambartel and Friedrich Kaulbach. Chicago: University of Chicago Press.
———, 1984. Collected Papers on Mathematics, Logic, and Philosophy, edited by Brian McGuinness. Oxford: Blackwell.
———, 2013. Basic Laws of Arithmetic, translated by Philip Ebert and Marcus Rossberg. Oxford: Oxford University Press.
Gabbay, Dov M. and John Woods, eds., 2004. Handbook of the History of Logic. Oxford: Elsevier.
Goldfarb, Warren, 1979. “Logic in the Twenties: The Nature of the Quantifier.” The Journal of Symbolic Logic 44: 351–68.
———, 2001. “Frege’s Conception of Logic.” In Floyd and Shieh (2001), pp. 25–39.
Löwenheim, Leopold, 1915. “Über Möglichkeiten im Relativkalkül.” Mathematische Annalen 76: 447–70.
Peckhaus, Volker, 2004a. “Calculus Ratiocinator versus Characteristica Universalis? The Two Traditions in Logic, Revisited.” History and Philosophy of Logic 25: 3–14.
———, 2004b. “Schröder’s Logic.” In Gabbay and John Woods (2004), pp. 557–609.
Potter, Michael and Thomas Ricketts, eds., 2010. The Cambridge Companion to Frege. Cambridge: Cambridge University Press.
Ricketts, Thomas, 2010. “Concepts, Objects, and the Context Principle.” In Potter and Ricketts (2010), pp. 149–219.
Rohr, Tabea, 2020. Freges Begriff der Logik. Paderborn: Mentis.
Schröder, Ernst, 1873. Lehrbuch der Arithmetik und Algebra für Lehrer und Studierende. Leipzig: Teubner.
———, 1877. Operationskreis des Logikkalkuls. Leipzig: Teubner.
———, 1880. “Rezension zu Freges Begriffsschrift .” Zeitschrift für Mathematik und Physik 25: 81–94.
———, 1890. Vorlesung über die Algebra der Logik (Exakte Logik). Leipzig: Teubner.
———, 1891. Vorlesung über die Algebra der Logik (Exakte Logik). Leipzig: Teubner.
———, 1895. Algebra und Logik der Relative. Vorlesung über die Algebra der Logik (Exakte Logik). Leipzig: Teubner.
Skolem, Thoralf, 1920. “Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischer Sätze nebst einem Theorem über dichte Menge.” Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse 4: 1–36.
———, 1923. “Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre.”: 217–32.
Thiel, Christian, 1975. “Zur Inkonsistenz der Fregeschen Mengenlehre.” In Frege und die moderne Grundlagenforschung, edited by Christian Thiel, pp. 134–59. Meisenheim am Glan: Anton Hain.
Trendelenburg, Adolf, 1856. Über Leibnizens Entwurf einer allgemeinen Charakteristik. Berlin: Königliche Akademie der Wissenschaften.
van Heijenoort, Jean, 1967. “Logic as Calculus and Logic as Language.” Synthese 17: 324–30.
Downloads
Published
Issue
Section
License
The Public Knowledge Project recommends the use of the Creative Commons license. The Journal for the History of Analytical Philosophy requires authors to agree to a Creative Commons Attribution /Non-commercial license. Authors who publish with the Journal for the History of Analytical Philosophy agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons BY-NC license.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.