Frege, Thomae, and Formalism
Shifting Perspectives
DOI:
https://doi.org/10.15173/jhap.v11i2.5366Abstract
Mathematical formalism is the the view that numbers are “signs” and that arithmetic is like a game played with such signs. Frege’s colleague Thomae defended formalism using an analogy with chess, and Frege’s critique of this analogy has had a major influence on discussions in analytic philosophy about signs, rules, meaning, and mathematics. Here I offer a new interpretation of formalism as defended by Thomae and his predecessors, paying close attention to the mathematical details and historical context. I argue that for Thomae, the formal standpoint is an algebraic perspective on a domain of objects, and a “sign” is not a linguistic expression or mark, but a representation of an object within that perspective. Thomae exploits a shift into this perspective to give a purely algebraic construction of the real numbers from the rational numbers. I suggest that Thomae’s chess analogy is intended to provide a model for such shifts in perspective.
References
Biermann, Otto, 1887. Theorie der analytischen Functionen. Leipzig: Druck und Verlag B. G. Teubner.
Boniface, Jacqueline, 2007. “The Concept of Number from Gauss to Kronecker.” In The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae, edited by Catherine Goldstein, Norbert Schappacher and Joachim Schwermer, pp. 314–42. Berlin, Heidelberg: Springer.
Bottazzini, Umberto, 1994. “Three Traditions in Complex Analysis: Cauchy, Riemann and Weierstrass.” In Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, edited by Ivor Grattan-Guinness, pp. 419–31. New York: Routledge.
———, 2002. “ ‘Algebraic Truths’ vs. ‘Geometric Fantasies’: Weierstrass’ Response to Riemann.” Proceedings of the International Congress of Mathematicians 3: 923–34.
Cantor, Georg, 1872. “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen.” Mathematische Annalen 5: 123–33.
Costreie, Sorin, 2013. “Frege’s Puzzle and Arithmetical Formalism. Putting Things in Context.” History and Philosophy of Logic 34: 207–24.
Couturat, Louis, 1896. De l’infini mathématique. Paris: F. Alcan.
Dathe, Uwe, 1997. “Gottlob Frege und Johannes Thomae.” In Frege in Jena: Beiträge zur Spurensicherung, edited by Gottfried Gabriel and Wolfgang Kienzler, pp. 87–103. Würzburg: Königshausen & Neumann.
Dedekind, Richard, 1872. Stetigkeit und irrationale Zahlen. Braunschweig: F. Vieweg und Sohn.
———, 1893. Was sind und was sollen die Zahlen?. Braunschweig: F. Vieweg.
———, 1963. Essays on the Theory of Numbers. Mineola, NY: Dover Publications.
Dehnel, Piotr, 2020. “The Middle Wittgenstein’s Critique of Frege.” International Journal of Philosophical Studies 28: 75–95.
Detlefsen, Michael, 2005. “Formalism.” In The Oxford Handbook of Philosophy of Mathematics and Logic, edited by Stewart Shapiro, pp. 236–317. New York: Oxford University Press.
Du Bois-Reymond, Paul, 1882. Die allgemeine Functionentheorie. 1 Theil. Metaphysik und Theorie der mathematischen Grundbegriffe: Grösse, Grenze, Argument und Function. Tübingen: Verlag der H. Laupp’schen Buchhandlung.
Epple, Moritz, 2003. “The End of the Science of Quantity: Foundations of Analysis, 1860-1910.” In A History of Analysis, edited by Hans Niels Jahnke, pp. 291–323. Providence, RI: American Mathematical Society.
Ferreirós, José and Erich H. Reck, 2020. “Dedekind’s Mathematical Structuralism: From Galois Theory to Numbers, Sets, and Functions.” In The Prehistory of Mathematical Structuralism, edited by Erich H. Reck and Georg Schiemer, pp. 59–87. New York: Oxford University Press.
Frege, Gottlob, 1884. Die Grundlagen Der Arithmetik. Breslau: Verlag von Wilhelm Koebner.
———, 1884/1980. The Foundations of Arithmetic, Second edition. Evanston, IL: Northwestern University Press.
———, 1885/1984. “On Formal Theories of Arithmetic.” In Collected Papers on Mathematics, Logic and Philosophy, edited by Brian McGuiness, pp. 112–21. Oxford: Basil Blackwell.
———, 1891/1997. “Function and Concept.” In The Frege Reader, edited by Michael Beaney, pp. 130–48. Oxford: Blackwell Publishing.
———, 1893/2013a. Basic Laws of Arithmetic, Volume 1, edited by Philip A. Ebert and Marcus Rossberg. Oxford: Oxford University Press.
———, 1903/2013b. Basic Laws of Arithmetic, Volume 2, edited by Philip A. Ebert and Marcus Rossberg. Oxford: Oxford University Press.
———, 1906. “Antwort auf die Ferienplauderei des Herrn Thomae.” Jahresbericht der Deutschen Mathematiker-Vereinigung 15: 586–90.
———, 1908a. “Die Unmöglichkeit der Thomaeschen formalen Arithmetik aufs Neue nachgewiesen.” Jahresbericht der Deutschen Mathematiker-Vereinigung 15: 52–55.
———, 1908b. “Schlußbemerkung.” Jahresbericht der Deutschen Mathematiker-Vereinigung 17: 56.
Gabriel, Gottfried, 1979. “Über einen Gedankenstrich bei Frege, eine Nachlese zur Edition seines wissenschaftlichen Nachlasses.” Historia Mathematica 6: 34–35.
Göpfert, Hartwig, 1999. Carl Johannes Thomae (1840–1921) - Kollege Georg Cantors an der Universität Halle. Berichte zur Geschichte der Mathematik in Wittenberg und Halle. https://disk.mathematik.uni-halle.de/history/reports/1999-21.pdf
Gray, Jeremy, 2015. The Real and the Complex: A History of Analysis in the 19th Century. Cham: Springer International Publishing.
Hahn, Hans, 1980. “The Crisis in Intuition.” In Empiricism, Logic and Mathematics: Philosophical Papers, edited by Hans Hahn and Brian McGuinness, pp. 73–102. Dordrecht: Springer Netherlands.
Hankel, Hermann, 1867. Vorlesungen über die complexen Zahlen und ihre Functionen. Leipzig: Leopold Voss.
Heine, E., 1872. “Die Elemente der Functionenlehre.” Journal für die reine und angewandte Mathematik 74: 172–88.
Kant, Immanuel, 1992. “Inquiry Concerning the Distinctness of the Principles of Natural Theology and Morality, Being an Answer to the Question Proposed for Consideration by the Berlin Royal Academy of Sciences for the Year 1763.” In Immanuel Kant: Theoretical Philosophy, 1755–1770, edited by David Walford and Ralf Meerbote, pp. 243–75. Cambridge: Cambridge University Press.
Kienzler, Wolfgang, 1997. Wittgensteins Wende zu seiner Spätphilosophie 1930 bis 1932: Eine historische und systematische Darstellung, First edition. Frankfurt am Main: Suhrkamp Verlag.
———, 2009. Begriff und Gegenstand: Eine historische und systematische Studie zur Entwicklung von Gottlob Freges Denken. Frankfurt am Main: Klostermann.
Lawrence, Richard, 2021. “Frege, Hankel, and Formalism in the Foundations.” Journal for the History of Analytical Philosophy 9: 5–27.
Liebmann, Heinrich, 1921. “Johannes Thomae.” Jahresbericht der Deutschen Mathematiker-Vereinigung 30: 133–44.
Linnebo, Øystein, 2017. Philosophy of Mathematics. Princeton, NJ: Princeton University Press.
Mancosu, Paolo, 2016. Abstraction and Infinity. Oxford: Oxford University Press.
Mühlhölzer, Felix, 2008. “Wittgenstein und der Formalismus.” In Ein Netz von Normen: Wittgenstein und die Mathematik, pp. 107–48. Berlin: Parerga.
Müller, Felix, 1900. Vocabulaire Mathématique: français-allemand et allemand-français. Leipzig: B. G. Teubner.
O’Connor, J. J. and E. F. Robertson, 2006. Carl Johannes Thomae - Biography, https://mathshistory.st-andrews.ac.uk/Biographies/Thomae/.
Peckhaus, Volker, 1997. “Formalistische Taschenspielertricks? Frege und Hankel.” In Frege in Jena: Beiträge zur Spurensicherung, edited by Gottfried Gabriel and Wolfgang Kienzler, pp. 111–22. Würzburg: Königshausen & Neumann.
Reck, Erich, 2003. “Dedekind’s Structuralism: An Interpretation and Partial Defense.” Synthese 137: 369–419.
Reck, Erich and Georg Schiemer, 2023. Structuralism in the Philosophy of Mathematics. The Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/structuralism-mathematics/. Spring 2023 edition.
Resnik, Michael D., 1980. Frege and the Philosophy of Mathematics. Ithaca, NY: Cornell University Press.
Shabel, Lisa, 1998. “Kant on the ‘Symbolic Construction’ of Mathematical Concepts.” Studies in History and Philosophy of Science Part A 29: 589–621.
Stenlund, Sören, 2015. “On the Origin of Symbolic Mathematics and Its Significance for Wittgenstein’s Thought.” Nordic Wittgenstein Review 4: 7–92.
———, 2018. “Frege’s Critique of Formalism.” In New Essays on Frege: Between Science and Literature, edited by Gisela Bengtsson, Simo Säätelä and Alois Pichler, pp. 75–86. Cham: Springer International Publishing.
Tait, W. W., 1996. “Frege versus Cantor and Dedekind: on the Concept of Number.” In Frege: Importance and Legacy, edited by Matthias Schirn, pp. 70–113. Berlin: De Gruyter.
Tappenden, Jamie, 2006. “The Riemannian Background to Frege’s Philosophy.” In The Architecture of Modern Mathematics: Essays in History and Philosophy, edited by José Ferreirós and Jeremy Gray, pp. 107–50. Oxford: Oxford University Press.
———, 2008. “A Primer on Ernst Abbe for Frege Readers.” Canadian Journal of Philosophy Supplementary Volume 34: 31–118.
———, 2019. “Infinitesimals, Magnitudes, and Definition in Frege.” In Essays on Frege’s Basic Laws of Arithmetic, edited by Philip A. Ebert and Marcus Rossberg, pp. 235–63. Oxford: Oxford University Press.
Thomae, Johannes, 1867. De Propositione Quadam Riemanniana Ex Analysi Situs. Nuremberg: G. Paetz.
———, 1880. Elementare Theorie Der Analytische Functionen Einer Complexen Veränderlichen. Halle: Verlag von Louis Nebert.
———, 1898. Elementare Theorie der analytischen Functionen einer complexen Veränderlichen, Second edition. Halle: Verlag von Louis Nebert.
———, 1906a. “Erklärung.” Jahresbericht der Deutschen Mathematiker-Vereinigung 15: 590–92.
———, 1906b. “Gedankenlose Denker.” Jahresbericht der Deutschen Mathematiker-Vereinigung 15: 434–37.
———, 1908. “Bemerkung zum Aufsatze des Herrn Frege.” Jahresbericht der Deutschen Mathematiker-Vereinigung 17: 56.
Waismann, Friedrich, 1979. Wittgenstein and the Vienna Circle: Conversations Recorded by Friedrich Waismann, edited by B. McGuiness. Oxford: Blackwell.
Weierstrass, Karl, 1886. Ausgewählte Kapitel aus der Funktionenlehre. Sommer-Semester Vorlesung, notes by G. Thieme. Manuscript in Mathematisches Institut, Humboldt Universität, Berlin
———, 1894a. “Aus einem bisher noch nicht veröffentlichten Briefe an Herrn Professor Schwarz, vom 3. October 1875.” In Weierstrass (1894b), pp. 235–44.
———, 1894b. Mathematische Werke von Karl Weierstrass, edited by Georg Hettner, Johannes Knoblauch and Rudolf Ernst Rothe. Berlin: Mayer & Müller.
———, 1894c. “Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen.” In Weierstrass (1894b), pp. 71–74.
———, 1894d. “Über das sogenannte Dirichlet’sche Princip.” In Weierstrass (1894b), pp. 49–54.
———, 1894e. “Zur Funtionenlehre.” In Weierstrass (1894b), pp. 201–33.
Weir, Alan, 2010. Truth Through Proof: A Formalist Foundation for Mathematics. Oxford: Oxford University Press.
———, 2020. Formalism in the Philosophy of Mathematics. The Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/formalism-mathematics/. Spring 2020 edition.
Wille, Matthias, 2020. ›alles in den Wind geschrieben‹: Gottlob Frege wider den Zeitgeist. Münster: Brill mentis.
Downloads
Published
Issue
Section
License
The Public Knowledge Project recommends the use of the Creative Commons license. The Journal for the History of Analytical Philosophy requires authors to agree to a Creative Commons Attribution /Non-commercial license. Authors who publish with the Journal for the History of Analytical Philosophy agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons BY-NC license.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License.