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Articulating Space in Terms of
Transformation Groups: Helmholtz and

Cassirer

Francesca Biagioli

1. Introduction

Hermann von Helmholtz played a key role in the neo-Kantian
project of a renewal of Kant’s transcendental philosophy not
least because of his objections to Kant in the light of later scien-
tific developments. In the eyes of his contemporaries and, more
recently, according to scholars such as Friedman (1997), Ryck-
man (2005), DiSalle (2006), Hyder (2009), and Patton (2014),
Helmholtz formulated both compelling objections to Kant and
rejoinders to such objections within the framework of a Kantian
epistemology. More generally, his epistemological work is a locus
classicus for clarifying the issue of which aspects of Kant’s phi-
losophy are up to the best current scientific theories and which
ones should be refurbished or even rejected on account of theory
change. However, this issue becomes more controversial, when
it comes to spelling out such aspects.1 One of the reasons for this,
I believe, is that Helmholtz’s arguments received different inter-
pretations in the light of mathematical procedures that were
developed only later or were not available to him at the time he
wrote. Therefore, I have argued elsewhere that a more compre-
hensive study of the reception of Helmholtz in neo-Kantianism
is no less essential to a correct assessment of the aspects of his
epistemology that do admit a Kantian interpretation (Biagioli
2016).

1On Hermann Cohen’s and Alois Riehl’s opposed readings of Helmholtz
see Biagioli (2014). More details about the controversial aspects in the literature
on Helmholtz’s characterization of space will be given in Section 3.1.

This paper deals with the more particular case of the reception
of Helmholtz in the debate on the articulation of the concept of
space in terms of transformation groups. The question whether
Helmholtz foreshadowed such an approach relates to the so-
called “Riemann-Helmholtz-Lie problem of space,” that is, the
problem of determining the necessary and sufficient conditions
for a Riemannian metric of constant curvature. As this label sug-
gests, the problem first posed by Helmholtz (1868) found a so-
lution only in the third volume of Sophus Lie’s Theorie der Trans-
formationsgruppen (1893)2. Accordingly, it became commonplace
to attribute to Helmholtz implicitly group-theoretical considera-
tions also with regard to his empiricist philosophy of geometry.3
Helmholtz maintained that the axioms of geometry have an em-
pirical origin in our observations of the behavior of solid bodies
rather than being a priori knowledge in Kant’s sense (i.e., neces-
sary and universally valid). Helmholtz’s objection to a Kantian
method of approaching measurement based on the necessary
precondition of Euclidean geometry was that non-Euclidean dis-
placements are imaginable under different empirical conditions.
Nevertheless, Helmholtz considered the possibility of general-
izing the Kantian notion of the form of spatial intuition to a
manifold of constant curvature, which would include Euclidean
and non-Euclidean geometries as special cases. In other words,
Helmholtz’s objection to Kant seems to amount to the fact that
the general properties of space can be identified as the invariants
of a larger group of transformations than the Euclidean group.

Although much of what Helmholtz says can be given a con-
sistent reading along these lines, several problems arise in the
above reading. Which are exactly the general properties of
space? How are they distinguished from the more specific ones?

2Translated by Joël Merker as Theory of Transformation Groups: General Prop-
erties of Continuous Transformation Groups. A Contemporary Approach and Trans-
lation (2015).

3See, e.g., DiSalle (2006, 77–78): “Poincaré’s group-theoretical account of
space (Poincaré 1902, 76–91) is only a psychologically more detailed, and
mathematically more precise, articulation of Helmholtz’s brief analysis.”
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Given infinite logical possibilities, what are the criteria for se-
lecting a hypothesis or a class of hypotheses when it comes to
the actual structure of space?

I will rely on Moritz Schlick’s reading of Helmholtz to argue
that these problems did not find an adequate solution in the
more recent literature. I will argue for a partial defense of the
group-theoretical reading in terms of Cassirer’s historical recon-
struction of the problem of space, according to which the very
idea of using transformation groups to articulate the notion of
space served the purpose of exploring new hypotheses.

The first part of the paper discusses some of the evidence for
the group-theoretical reading of Helmholtz in his epistemolog-
ical writings. Subsequently, the main argument for using group
theory to spell out Helmholtz’s considerations (in particular the
thought experiments about the world in a convex mirror) is
traced back to Felix Klein (1898). The second part of the paper
deals with Schlick’s critical remarks against this reading, which
had imposed itself after Henri Poincaré formulated a similar
thought experiment about the non-Euclidean world in La Sci-
ence et L’Hypothèse (1902). The concluding section discusses how
Cassirer elaborated on the philosophical implications of Klein’s
and Helmholtz’s methodologies in the fourth volume of Das
Erkenntnisproblem in der Philosophie und Wissenschaft der neueren
Zeit (1940)4.

2. Helmholtz and the Group-Theoretical View of
Geometry

2.1. A place for group-theoretical considerations in
Helmholtz’s geometrical papers: 1868–1878

Helmholtz formulated what he believed to be a set of necessary
and sufficient conditions for a Riemannian metric of constant

4Appeared posthumously in English translation as The Problem of Knowl-
edge: Philosophy, Science, and History since Hegel (1950).

curvature in 1868. Later group-theoretical considerations in the
work of Lie relate, in particular, to Helmholtz’s requirement that
any point of a system in motion can be moved continuously to
the place of any other (i.e., the free mobility of rigid bodies).
As pointed out by Lie, Helmholtz seems to presuppose a false
inference from the latter condition to a similar requirement of
free mobility at the infinitesimal level. Lie showed that, nev-
ertheless, a proof of Helmholtz’s conjecture can be obtained by
restricting free mobility and the other conditions to the relations
of infinitesimally near points (Lie 1893, 460–64). Alternatively,
Lie showed that Helmholtz’s conditions—as originally formu-
lated by him—can be used to characterize Euclidean and non-
Euclidean motions, insofar as the operations with rigid bodies
form a group (of collineations).5 However, such a characteriza-
tion is univocal only for finite regions of space (1893, 470–71).

Lie’s group-theoretical considerations enabled him to gain
clarity over what can and cannot be proved under Helmholtz’s
conditions. In addition, Lie believed that the use of group-
theoretical expressions was at least “compatible” with what
Helmholtz said in a time where the language of group theory
was not yet available (Lie 1893, 469).

Further evidence for attributing to Helmholtz group-
theoretical procedures is found in his epistemological lectures
for a wider audience, “Über den Ursprung und die Bedeutung
der geometrischen Axiome” (1870) and “Die Tatsachen in der
Wahrnehmung” (1878).6 Although these lectures do not contain

5Informally, operations form a group iff: (i) the product of any two oper-
ations of the group also belongs to the group; (ii) for every operation of the
group, there exists in the group an inverse operation; (iii) there is in the group
an identity substitution. See Yaglom (1988, 12–13) for a formalization of the
original definition, which was first given by Évariste Galois with regard to
sets of permutations. As pointed out by Wussing (2007), the abstract concept
of group originated from the generalization of Galois’s and Camille Jordan’s
notion in the works of Klein and Lie, among others.

6Translated as “The Origin and Significance of Geometrical Axioms” and
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new mathematical results, they were the main references for
the argument about the possibility of imagining non-Euclidean
spaces. This is also due to the fact that, in 1869, Eugenio Beltrami
had pointed out to Helmholtz that his previous characterization
of rigid motions included non-Euclidean motions. Another rea-
son is that the premises of Helmholtz’s argument are taken not
from purely mathematical researches, but from his theory of
vision (Helmholtz 1867). In his epistemological writings, Helm-
holtz emphasized that the starting point of his geometrical in-
vestigation was somehow induced from the observation that
solids or parts of our bodies can be brought to congruent coin-
cidence without changing in shape and size, as a sort of gener-
alized “fact” (Helmholtz 1921, 15, 41, 135–36). The argument of
1870 relies on Helmholtz’s empiricist approach for the view that
spatial intuitions are inferred from experiences rather than pos-
sessed a priori, as Kant claimed. Helmholtz argued that Kant’s
claim was contradicted by the possibility of inferring different
intuitions under the hypothesis of different mechanical laws.

Helmholtz described in a thought experiment what the mea-
surements in a convex mirror would look like under the hy-
pothesis that rigid bodies can be superimposed in a congruent
manner in the vicinity of the center and tend to contract in the
measure that they move towards the edges of the mirror. To
an external observer, the objects in the mirror would appear to
move as in a pseudospherical space.7 For every measurement
in our world, there would be a corresponding measurement
in the mirror. This means that a hypothetical inhabitant of the
mirror, whose bodily and visual experiences would be subject
to the same conditions, would be able to judge correctly about
distances by visual estimation. If someone who has only had

“The Facts in Perception.” Both papers are found in the English edition of
Helmholtz’s Epistemological Writings (1977).

7Helmholtz’s thought experiment is modelled on Beltrami’s (1868) inter-
pretation of non-Euclidean geometry on a surface called a “pseudosphere.”

experience of a flat space would suddenly find herself in such
a world, she would perceive very distant objects as nearer and
converging lines would appear to diverge as she approaches.
However, it is imaginable that she would become accustomed to
these phenomena and learn to adjust her judgments after some
time. Helmholtz’s conclusion is that spatial intuition or immedi-
ate knowledge about space is in fact the result of a more complex
cognitive process activated by the regularity of the phenomena.
Therefore, contrary to Kant’s pure intuitions, spatial perception
according to Helmholtz can adapt even to intuitions we never
had (Helmholtz 1921, 5).

Helmholtz’s argument concerning geometrical axioms is that
these can be derived from empirical facts and perhaps even re-
futed by experience. An example of this is imaginable along
the lines of the above thought experiment, insofar as the laws of
Euclidean geometry (especially the axiom of parallels) would be
approximately valid only at the center of the mirror. The same
laws would be contradicted ever more apparently at the pe-
riphery. According to Helmholtz, this shows that the particular
choice of Euclidean or non-Euclidean axioms in representing
space depends on the mechanical behavior of our most fixed
bodies. Only free mobility is a precondition for the possibility of
measurement itself, as “all spatial measurement, and therefore
in general all magnitude concepts applied to space, presuppose
the possibility of the motion of spatial structures whose form
and magnitude one may take to be unchanging despite the mo-
tion” (Helmholtz 1921, 24).

In 1870, Helmholtz used this argument to reject Kant’s view
of (Euclidean) geometry as a paradigm of a priori knowledge
(i.e., apodictic and independent of experience). He clarified the
latter point in 1878 by distinguishing the idea of a general form of
intuition from the specific assumptions expressed by the axioms
of geometry. In the light of this distinction, it becomes clear that
Helmholtz’s objection to Kant concerns the status of the latter
assumptions in particular. He wrote:
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I believe the resolution of the concept of intuition into the elemen-
tary processes of thought is the most essential advance in the recent
period. This resolution is still absent in Kant, which is something
that then also conditions his conception of the axioms of geometry
as transcendental propositions. Here it was especially the phys-
iological investigations on sense perception which led us to the
ultimate elementary processes of cognition. These processes had
to remain still unformulable in words, and unknown and inaccessi-
ble to philosophy, as long as the latter investigated only cognitions
finding their expression in language. (Helmholtz 1921, 143)

This argument relates to the general, discursive concepts of tra-
ditional logic, which Kant contrasted with the single and imme-
diate intuition of space in the Transcendental Aesthetic (Kant
1787, 40). A related question arises whether the same cognitive
processes would find a more adequate representation in math-
ematical terms. Helmholtz himself proposed such a representa-
tion by identifying the structure of space as a three-dimensional
manifold that satisfies the free mobility of rigid bodies.

Although the group-theoretical view of geometry was un-
available to Helmholtz, group theory presented itself as a natu-
ral candidate for a more precise articulation of his view. Firstly, it
offered a model-based account of non-Euclidean measurements.
Secondly, the above distinction between general and special as-
sumptions about space seemed to find a more precise expres-
sion in terms of inclusion of one group of transformations into a
larger group. Thirdly, there is evidence that Helmholtz deemed
it more plausible that the idea of a generalized form of intuition
would find an adequate expression in mathematical terms. He
wrote in Appendix 3 of the printed version of the same lecture:

Kant’s doctrine of the a priori given forms of intuition is a very for-
tunate and clear expression of the state of affairs; but these forms
must be devoid of content and free to an extent sufficient for ab-
sorbing any content whatsoever that can enter the relevant form of
perception. But the axioms of geometry limit the form of intuition
of space in such a way that it can no longer absorb every thinkable

content, if geometry is at all supposed to be applicable to the actual
world. If we drop them, the doctrine of the transcendentality of
the form of intuition of space is without any taint. Here Kant was
not critical enough in his critique; but this is admittedly a matter of
theses coming from mathematics, and this bit of critical work had
to be dealt with by the mathematicians. (Helmholtz 1921, 162–63)

In order to explore these ideas further, the following section
discusses Klein’s argument for a group-theoretical interpreta-
tion of Helmholtz’s thought experiment. The idea of using group
theory to clarify Helmholtz’s distinction between general and
specific properties of space is discussed in the following section.
Finally, it will be argued that the emergence of the concept of
group in this debate opens the door to a possible development
of the Kantian theme in Helmholtz’s considerations.

2.2. Klein’s reading of Helmholtz

As mentioned earlier, Lie was the first to point out that Helm-
holtz’s investigation of the foundations of geometry contained
implicitly some group-theoretical considerations. However, Lie
showed that Helmholtz’s own considerations required substan-
tial revisions, when reformulated in group-theoretical terms.

This section addresses the related question whether group
theory offers a plausible interpretation of Helmholtz’s episte-
mological argument about the geometrical presuppositions of
measurement. According to philosophers such as Bertrand Rus-
sell, there was a clear distinction between the epistemological
focus of Riemann’s and Helmholtz’s earlier investigations into
the foundations of geometry and the more technical results of
Klein’s and Lie’s works on projective geometry and group the-
ory (Russell 1897, chap. 1). Russell maintained that it was only in
a third phase of this debate that mathematicians such as Henri
Poincaré, Moritz Pasch, and Giuseppe Veronese addressed the
problem of the origin of geometrical concepts from a new epis-
temological perspective. However, independently of Poincaré’s
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better-known discussion, a group-theoretical reading of Helm-
holtz’s epistemological argument was given by Klein in his re-
view of the third volume of Lie’s Theorie der Transformationsgrup-
pen. Klein delivered this lecture to the Physico-mathematische
Gesellschaft of the University of Kazan, when Lie was awarded
the first Lobachevsky prize, in 1897.

Part of the reasons for the delayed reception of Klein’s ideas is
the delayed reception of his mathematical work on non-Euclid-
ean geometry itself.8 Klein presented the first projective model
of non-Euclidean geometry based on a projective metric in 1871.
According to this model, geometries are classified into ellip-
tic, hyperbolic, and parabolic. Klein laid down the fundamental
ideas for a group-theoretical view of geometry in his “Vergleich-
ende Betrachtungen über neuere geometrische Forschungen”
(1872)9, which is best known as the “Erlanger Programm,” after
Klein’s appointment as a professor at the University of Erlan-
gen in the same year. As the projective model of non-Euclidean
geometry showed, geometrical properties can be characterized
in different ways as the invariants relating to a particular group
of transformations. For example, it is a well-known fact that
displacements and rotations in Euclidean geometry do not alter
such properties as distances, the measure of angles, parallelism,
and the distinction between lines and curves. However, only the
latter property is generally preserved by projections. Klein iden-
tified the group of transformations that is common to Euclidean
and non-Euclidean geometries as collineations. He proved the
equivalence of his earlier classification of geometries with the
three cases of manifolds of constant curvature according to Bel-
trami’s theory (i.e., more, less than and equal to 0, respectively)
by identifying the corresponding transformation groups. It fol-
lowed a proof that metrical projective geometry is independent

8In what follows, I rely above all on Hawkins (1984) and Rowe (1992).
9Translated by Mellen W. Haskell as “A Comparative Review of Recent

Researches in Geometry” (1892–1893).

of the theory of parallels, insofar as the axiom of parallels is
valid only in the third case (i.e., in parabolic geometry).

Although the ideas of the Erlanger Programm have been con-
sidered to be very influential in retrospect, Klein himself did not
draw much attention to it until only after the development of
essential requirements for the implementation of such a project
by other mathematicians, in particular Lie. So, it was not by
chance that Klein especially emphasized the significance of the
group-theoretical view for the theory of measurement in his re-
view of Lie’s work. Klein began by presupposing that the points
in space can be represented by the 3-tuples of a continuous nu-
merical manifold or Dedekind’s axiom of continuity. In general,
Klein conceived of axioms as “the postulates by which we read
exact assertions into inexact intuition” (Klein 1890, 572). Klein
maintained that each geometry deserves an axiomatic definition
according to the group of transformations that acts upon its el-
ements. Such a definition, in Klein’s view, depends on “concep-
tual properties” independently of the particular and arbitrary
choice of coordinates (Klein 1898, 588). The consideration of a
transformation group entails a definition of the particular prop-
erties of figures as relative invariants. According to Klein, this is
the “approach of metrical geometry, when the fact of the free mo-
bility of rigid bodies (or the ‘statements of congruence’) is taken
as primitive” (1898, 588). This indicates that Klein attributed to
Helmholtz a group-theoretical approach to the foundation of
metrical geometry.

However, in the second part of the paper, Klein showed how
the same conclusions follow from the “geometrical foundations”
of group theory independently of the presupposition of the nu-
merical representation (Klein 1898, 593). In Klein’s view, the
formulation of postulates is justified by the fact that there is
a lower limit to empirical measurement. Klein’s approach to
the problem of space emerges from the following consideration
about the upper limit:
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Correspondingly, when it comes to taking into consideration the
topologically different forms of space for the determination of the
geometry of actual space, we are faced not so much with an arbi-
trary but with an inner consequence. Our empirical measurement
has also an upper limit, which is given by the dimensions of the
objects accessible to us or to our observation. What do we know
about spatial relations in the infinitely large? To begin with, ab-
solutely nothing. Therefore, we rely on the postulates that we
formulate. I consider all of the different topological forms of space
equally compatible with experience. The fact that we put first some
of these forms of space in our theoretical considerations (i.e., the
original types, that is, the properly parabolic, hyperbolic, and ellip-
tic geometries) and finally select parabolic geometry (i.e., the usual
Euclidean geometry), depends solely on the principle of economy.
(Klein 1898, 595)

The problem under consideration consists of determining the
class of all surfaces in elliptic, hyperbolic, and parabolic space
that are locally isometric to the Euclidean plane.10 Klein re-
stricted his consideration to the manifolds of constant curva-
ture and singled out Euclidean geometry for reasons of simplic-
ity, in a way that closely reminds one of Poincaré (1898). As
pointed out by DiSalle (2006), this line of argument differs from
Helmholtz’s in one important consequence: for Helmholtz, the
ultimate grounds for selecting the geometry of space are em-
pirical rather than conventional. Nevertheless, Klein deemed
the group-theoretical view “conceptual” in Helmholtz’s sense,
namely as implicit in but not univocally determined by the
series of impressions associated with motions.11 For example,
Klein introduced the distinction between metrical and projec-

10Klein’s solution to this problem is found in Klein (1890). This is known
as a distinct problem of space, which is now called “Clifford-Klein” or “the
problem of the form of space” (Torretti 1978, 151).

11It is worth adding that Klein reconsidered his earlier argument after Ein-
stein’s general relativity by admitting that the form of space in the infinitely
large may depend on the distribution of matter (Klein 1928, 270; see also
Torretti 1978, 152).

tive geometry “not as arbitrary or indicated by the nature of
the mathematical methods, but as corresponding to the actual
formation of our space intuition, in which mechanical experi-
ences (concerning the movement of rigid bodies) combine with
experiences of visual space (concerning the different kind of
projection of intuited objects)” (Klein 1898, 593). In this way,
Klein’s geometrical argument enabled him to avoid a classical
objection against Helmholtz’s approach, which found one of its
clearest formulations in Poincaré:

For Helmholtz and Lie the matter of the group existed previously
to the form, and in geometry the matter is a numeric manifold
(Zahlenmannigfaltigkeit) of three dimensions. The number of di-
mensions is therefore posited prior to the group. For me, on the
contrary, the form exists before the matter . . . We escape in this way
also an objection which has often been made to Helmholtz and Lie.
But your group, say these critics, presupposes space; to construct
it you are obliged to assume a continuum of three dimensions.
You proceed as if you already knew analytical geometry. (Poincaré
1898, 40)

Hyder sheds light on Helmholtz’s reliance on analytic geom-
etry by observing that, as a physicist, Helmholtz emphasized
that numeric values were needed to pick out a system of rigid
(self-identical) motions (Hyder 2009, 171). As pointed out by
Hyder, this presupposition enabled Helmholtz to account for
the possibility of determining congruence as a regulative de-
mand in Kant’s sense. However, it remains true that circularity
would arise, if the numerical representation of space was to be
taken as part of a fundamental analysis of space in terms of
transformation groups.

Whereas Poincaré believed that this undermined Helmholtz’s
approach, Klein avoided circularity by showing that the foun-
dation of metrical geometry based on the statements of congru-
ence and the numeric representation of space can be rephrased
from a geometrical point of view via the projective model of
non-Euclidean geometry. According to Klein, this ultimately
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depends on the general scope of the mathematical reasoning at
work in the foundation of measurement. With regard to Helm-
holtz’s reasoning, Klein traced back a geometrical point of view
to Helmholtz’s physiology of vision as follows:

Helmholtz was presumably far from the typical projective way of
thinking (in the sense of von Staudt). It must be added that, in
the years of Helmholtz’s mathematical work, projective geometry
was usually considered to be a special field; the insight into its
foundational meaning for every geometrical speculation was not
widespread at all. Or maybe Helmholtz, as a natural scientist,
was fundamentally reluctant towards the abstraction that lies at
the foundation of projective geometry. In the introduction to his
Göttingen notice from 1868 he distances himself from a foundation
of geometry that would put forward the properties of visual space,
because even the blind can acquire correct representations of space.
Interestingly, this is in contrast though with the fact that Helmholtz
himself is continuously led to deal with projective questions by his
extensive optical investigations. He deals with these questions by
auxiliary means of his own invention, but also sometimes by means
of general reasoning. (Klein 1898, 598)

Not only does Helmholtz foreshadow the projective and group-
theoretical view of geometry according to Klein, but the passage
above suggests that there is some continuity between Helm-
holtz’s psychological considerations on spatial intuitions and
the generalization to mathematical reasoning. Along these lines,
Klein maintained that his model of non-Euclidean geometry
provides an adequate interpretation of Helmholtz’s thought
experiments about free mobility in a hyperbolical space. The
fundamental ideas of Helmholtz’s argument find a precise ex-
pression by saying that the measurements in our world and the
corresponding measurements in the mirror belong to the larger
group of collineations (1898, 599).

This example sheds further light on Klein’s view of geometri-
cal knowledge as based on axioms, where axioms impose con-
ceptual constraints on imprecise intuitions. Klein relies on the

general level of mathematical reasoning to justify, in addition,
the introduction of ideal elements—which play a fundamental
role in projective geometry—and the axiom of continuity, which
enables the observer to postulate a bĳective correspondence be-
tween points and numbers in measurement (Klein 1898, 594).12

Klein’s reading of Helmholtz certainly accounts for the rel-
evance of Helmholtz’s psychological investigations to his geo-
metrical reasoning. However, it is not clear to what extent Helm-
holtz himself met Klein’s requirement of idealization. Nor did
Klein discuss the status of what Helmholtz, referring to Kant,
called the form of spatial intuition. If it were to be characterized
in terms of imprecise empirical intuitions, the form of intuition
would lose its general character. If identified with the full-blown
mathematical analysis of a projective metric, such a form would
lose its immediacy and would coincide fundamentally with con-
ceptual thinking. The latter option is suggested by Helmholtz’s
remark about the resolution of intuition into intellectual pro-
cesses and inspired several strategies for an intellectualization
of intuition in neo-Kantianism. The following section contrasts
Schlick’s fundamental objection to this tradition with Cassirer’s
strategy.

3. Schlick and Cassirer

The group-theoretical articulation of space was called into ques-
tion after Einstein’s general relativity for two main reasons.
Firstly, in the above classification of the geometries that figure
as possible candidates for the representation of physical space
there is no place for the hypothesis of a variable curvature. How-
ever, the latter hypothesis received an unexpected application
in Einstein’s space-time theory. Secondly, and more fundamen-

12This axiom does not feature in Helmholtz’s considerations. However, in
Helmholtz (1887) he explains that approximation suffices for the purposes of
physics even without using irrational numbers.
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tally, the traditional approach to the problem of space failed to
account for the possibility that the geometry of physical space
depends on empirical factors. Klein’s and Poincaré’s conjecture
was that a comparison of geometries alone would suffice to de-
termine which hypothesis would be the most convenient. On
the contrary, the curvature of space-time in Einstein’s gravita-
tion theory depends on the distribution of matter. If a general
form of space in the Kantian sense is to be distinguished from
the specific properties of space in relativistic physics, a further
generalization to the invariants of Einstein’s space-time theory
is required.13

A comparison between the classical and the relativistic prob-
lem of space is beyond the purposes of this paper. This section
focuses on the related question whether, nevertheless, the artic-
ulation of space in terms of transformation groups provides a
plausible interpretation of Helmholtz’s ideas.

3.1. Specific or general properties of space?

Schlick distanced himself from the received interpretation of
Helmholtz in his comments on the centenary edition of Helm-
holtz’s Schriften zur Erkenntnistheorie (1921),14 which was pub-
lished by Schlick himself in collaboration with the physicist Paul
Hertz. In what follows, I will refer to Schlick’s comments on “Die
Tatsachen in der Wahrnehmung,” namely, the central work for
the articulation of Helmholtz’s view of the form of intuition.15

13Famously, Hermann Weyl worked on such a generalization from 1918 to
1923. See Ryckman (2005) for a detailed discussion of Weyl’s work and its
relation to the Kantian tradition.

14Translated by Malcom F. Lowe as Epistemological Writings (1977).
15Schlick commented on Helmholtz’s most philosophical papers (i.e., Helm-

holtz 1870, 1878) while leaving to Paul Hertz the comments on Helmholtz’s
mathematical papers (Helmholtz 1868, 1887). It might be objected that such
a division obscures the connection between the philosophical and the math-
ematical aspects of Helmholtz’s work. In the following, I suggest that this
partly depends on Schlick’s own attempt to clarify the different aspects of
Helmholtz’s notion of space.

On the one hand, Schlick and Hertz referred to Lie for a rigorous
solution of the problem of space via explicitly group-theoretical
considerations. On the other hand, Schlick denied that the same
kind of considerations account for Helmholtz’s distinction be-
tween the general form of intuition and the properties that are
being specified as geometrical axioms. After drawing this dis-
tinction, Helmholtz provided a few examples of axioms of or-
dinary (i.e., Euclidean) metrical geometry: between two points
only one straight line is possible; through any three points a
plane can be placed; through any point only one line parallel to
a given line is possible (Helmholtz 1921, 128). However, he did
not clarify with further examples what properties exactly would
count as more general. According to Helmholtz, it should be pos-
sible to derive the “most essential features” of spatial intuition
from the order of what exist “one beside another.” As a further
step, we learn to compare magnitudes “by observing congru-
ence of the touching hand with parts or points of the surfaces
of bodies, or congruence of the retina with parts and points of
the retinal image” (1921, 127). So, the question arises whether
such knowledge can be given an axiomatic formulation in the
light of later mathematical developments. Schlick admitted that
modern geometers tended to answer this question affirmatively,
although not everyone agreed on the particular axiomatization.
Lie and Klein identified the more general structure of space
that results from Helmholtz’s distinction as a projective metric,
which would include Euclidean and non-Euclidean geometries
as special cases. Russell (1897) identified the common proper-
ties of Euclidean and non-Euclidean geometries as continuity,
homogeneity, and having a finite number of dimensions in pro-
jective geometry (without a metric). Poincaré (1898) ruled out
both interpretations by identifying the only “qualitative” geom-
etry as the analysis situs.16

16The “analysis situs” or “science of position” in which Poincaré himself
made essential contributions is known today as “topology.”
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Schlick advocated a wholly different interpretation, for two
reasons. Firstly, in order to uphold Helmholtz’s distinction,
“the ‘general form’ will have to be understood as the indescrib-
able psychological component of spatiality which is imbued in
sense perception” (Schlick in Helmholtz 1921, 172–73). Secondly,
Schlick called into question Helmholtz’s distinction between the
form and the matter of spatial intuition. What Helmholtz called
“form” belongs to the content of intuition in the Kantian sense.
For example, Helmholtz compared spatial intuition to the color
system. However, only space and time are forms of intuition
according to Kant. In Schlick’s view, a more consistent natural-
ization would reduce spatial intuition to sensuous contents. The
result of such a reduction is what Schlick identified as a sub-
jective spatial intuition or acquaintance with the spatiality of
sense perception. Insofar as the physical concept of space can be
characterized mathematically, Schlick identified the latter with
a formal construction (Schlick in Helmholtz 1921, 167).17

In other words, in order to uphold Helmholtz’s distinction,
Schlick rejected another important aspect of his conception of
space, that is the view that the formation of spatial concepts—as
in Kant’s theory of space—offers an account for the applicabil-
ity of geometry in physics. It was in virtue of this aspect that
Helmholtz called Kant’s doctrine of the a priori given forms of
intuition “a very clear expression of the state of affairs” in the
above quote. In the changed context of Schlick’s interpretation,
on the one hand, axioms were introduced as arbitrary assump-
tions, whose consistency with one other had to be proved ac-
cording to David Hilbert’s axiomatic method. The same method
enabled the definition of geometric objects as the abstract terms
that stand in the relations established by the axioms. On the
other hand, the physico-mathematical representation of space-

17See Neuber (2012) on the development of this argument in Schlick’s
thought. The above distinction between phenomenal and physical space goes
back to Schlick (1916) and remains a tenet throughout his later views.

time that is presupposed by Einstein’s theory of measurement
was in contradiction with the approximately Euclidean space of
our everyday experiences: modern physics has gone over to the
assumption of non-Euclidean metrics and ascribed to space a
variable measure of curvature (Schlick in Helmholtz 1921, 185).
Schlick therefore deemed a favorable interpretation of Helm-
holtz the view that our (empirical) intuitions would adapt to
the non-Euclidean metrics under different physical laws. How-
ever, under this assumption, nothing remains of Kant’s a priori
intuition, which in Kant’s original sense of “a priori” would be
universally valid and necessary (see Schlick in Helmholtz 1921,
181 n 60). In order to account for presuppositions of measure-
ment such as Helmholtz’s definition of “rigidity,” Schlick ad-
vocated Poincaré’s geometrical conventionalism, according to
which it has to be stipulated that some physical bodies satisfy
free mobility.

As Friedman pointed out, Schlick’s reading of Helmholtz
presupposes scientific and mathematical concepts that were
unavailable to Helmholtz himself. More importantly, Schlick
tended to ascribe to Helmholtz his own philosophical assump-
tions about causal realism, which are sometimes inconsistent
with Helmholtz’s view of empirical knowledge. According to
Friedman: “In the physiological optics Helmholtz comes very
close to the view that lawlike relations among our sensations—
arrived at by inductive inferences in accordance with the prin-
ciple of causality or the lawlikeness of nature—are constitutive
of their relationship to an external world” (Friedman 1997, 33).
Friedman goes on to argue that the final piece of the puzzle was
Helmholtz’s mathematical contribution to the Helmholtz-Lie
problem of space. This enabled him to distinguish between the
general concept of space, which is a precondition for the possibil-
ity of measurement, on the one hand, and the different metrical
geometries that depend on experience, on the other. Ryckman
summarized the same argument by saying that: “Helmholtz
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argued against the Kantian philosophy of geometry while re-
taining an inherently Kantian theory of space” (Ryckman 2005,
73–74). It follows that geometrical conventionalism is not the
only consistent reading of “rigidity” in Helmholtz’s sense. The
notion of a rigid body is “constitutive of the concept of congru-
ence on which geometrical measurement rests” (2005, 71).

However, it remains true that Schlick formulated a compelling
objection, when it comes to clarifying the supposed properties
of what Helmholtz calls the general form of intuition: once such
properties have been given a precise mathematical formulation,
it is not clear what distinguishes them from the more specific
properties, which Helmholtz identifies as geometrical axioms.
Such a difficulty is still present in the literature, where sev-
eral interpretations have been proposed. Some interpreters put
at the center the abstract notion of a differentiable manifold,
which they deem an intellectualized representation of our nat-
ural knowledge about space (Torretti 1978, 166). It follows from
this reading that the general properties of space can be stated
by the axioms of analytic geometry, although these were not
part of the traditional axioms of metrical geometry, which for
Helmholtz are empirical (Torretti 1978, 166–67; Lenoir 2006, 201).
Others point out that “Helmholtz’s intuition of space is richer
than Schlick’s, because it operates with the free mobility of rigid
bodies and therefore includes the idea of constant curvature of
space” (Pulte 2006, 198). This characterization, however, would
be too narrow to account for the variably curved space-time of
general relativity. To put it in group-theoretical terms, given
the possibility of generalizing spatial concepts to ever more ab-
stract invariants, the problem arises of clarifying which invari-
ants should be “free of content” enough for the purposes of
measurement.

3.2. Articulating the concept of space as an ongoing
process

One possible strategy for dealing with the problem posed by
Helmholtz is to identify a privileged class of hypotheses con-
cerning the structure of actual space among all the logical
possibilities. Given the fact that several geometries would be
equally compatible with experience, our choice will depend ul-
timately on rational grounds (e.g., the principle of the economy
of thought in the above quote from Klein, or simplicity, accord-
ing to Poincaré18). Cassirer defended the same strategy in Sub-
stanzbegriff und Funktionsbegriff (1910). However, he substantially
revised his argument in his later work, Zur Einstein’schen Rela-
tivitätstheorie (1921).19 Here, Cassirer admitted that the above
strategy proved to be insufficient for the solution to the rela-
tivistic problem of space. So now he identified the “a priori”
of space as the more general function of spatiality that finds
its expression in the line element of a Riemannian space (Cas-
sirer 1923, 433). Such a priori knowledge allows for the variably
curved space-time of Einstein’s gravitation theory, insofar as no
specific metrical structure has to be attached to space itself.

While Cassirer’s argument takes into account the revolution-
ary aspect of Einstein’s theory, it has been objected that not
much remains of what Kant called “a priori.” Schlick wrote in
the concluding argument against a mathematical formulation of

18Poincaré’s position is best known as geometrical conventionalism, with
regard to his thesis that one geometry cannot be more “true” than another, but
only more “convenient” (Poincaré 1898, 42). Poincaré’s conventions, however,
are not arbitrary. In the same paper, for example, he goes on to argue that
“reason has its preferences,” although these are not as “imperative” as Kant’s
aprioricity: “It has its preferences for the simplest because, all other things
being equal, the simplest is the most convenient” (1898, 42). According to
Poincaré, Euclidean geometry is simpler, because only the Euclidean group
has the translations as a normal subgroup.

19Both works are found in the English edition of Cassirer’s Substance and
Function and Einstein’s Theory of Relativity (1923).
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the distinction between general and specific properties of space:

Some neo-Kantians (as P. Natorp, E. Cassirer) have tried to con-
ceive of the a priori nature of spatial intuition in the genuine sense
of Kant (thus not in Helmholtz’s psychological interpretation), but
such that it does not comprise the stipulation of some or other spe-
cific Euclidean or non-Euclidean geometry. They seem, however,
to be defeated by their effective failure to say what are the a priori
laws of spatial intuition which, in their opinion, then still remain.
(Schlick in Helmholtz 1921, 173)

More generally, Cassirer’s earlier philosophical project of a
neo-Kantian philosophy of mathematics that would account for
the applicability of some parts of mathematics seemed to be
called into question. As observed by Heis (2011), Cassirer’s ma-
ture philosophy of mathematics seems to focus on the problem
of a unitary account of “pure mathematics” instead. The group-
theoretical articulation of space plays nonetheless a central role
both in Cassirer’s early neo-Kantianism and in the later devel-
opments of his philosophy of mathematics (see Ihmig 1997).
Important sections of the Philosophy of Symbolic Forms are de-
voted to the same topic. Some of Cassirer’s latest papers and
lectures from the American period are devoted to the concept of
group (in Cassirer 2010).

Without attempting to provide a comprehensive discussion
of this complicated issue here, I will limit myself to drawing at-
tention to another work that is worth considering for Cassirer’s
final position on the problem of space, that is, the fourth vol-
ume of Das Erkenntnisproblem in der Philosophie und Wissenschaft
der neueren Zeit: Von Hegels Tod bis zur Gegenwart. The original
version of this work dates back to 1940; however, it first appeared
in English translation in 1950.

Considering the formation of geometrical concepts in modern
geometry, Cassirer called into question the idea of the necessary
applicability of geometry in the received view. The loss of cer-
tainty followed from the transformation of mathematics from

the science of specific objects (i.e., numbers and magnitudes)
to the study of structures. Paraphrasing a passage from Klein’s
Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhun-
dert, Cassirer deems the concept of group “characteristic of a
wholly intellectual mathematics that has been purged of all in-
tuition; of a theory of pure forms with which are associated
not quantities or their symbols, numbers, but intellectual con-
cepts, products of thought, to which actual objects or their rela-
tions may, but need not, correspond” (Cassirer 1950, 30). What
is counterintuitive about these kinds of concepts is that geomet-
rical properties can be determined univocally only relating to
transformation groups. Absolute distances and the measure of
angles, for examples, are invariant under translations, which
form a normal subgroup of the Euclidean or “principal” group,
after Klein’s terminology. However, Klein’s projective model of
non-Euclidean geometry of 1871 shows that the same properties
are altered by collineations. Therefore, Klein (1872) claimed that
the task of geometry in general is not to study the properties
of particular figures, but, given a manifold and a transforma-
tion group on it, to investigate the properties that are invariant
under this group. It follows that every geometry is equivalent
when it comes to its truth. Cassirer observed that, nevertheless,
geometrical concepts can be ordered from the more specific to
the most general according to their relative invariants. Affine
transformations form a larger group than translations, insofar
as they map lines to lines and preserve the relations of paral-
lelism. Collineations preserve only such properties as, of points:
to lie on the same line, of curves: to be a conic. Finally, the trans-
formation of the analysis situs can turn even straight lines into
curves (Cassirer 1950, 33–34).

In Schlick’s view, the same fact about the progressive abstrac-
tion of modern geometry is in open contradiction to the sup-
posed necessity and generality of Kant’s a priori intuitions: not
only is intellectual mathematics wholly detached from spatial
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intuitions, but it is also insufficient to deal with the epistemo-
logical problem of space. According to Schlick’s conventional-
ism, simplicity offers a selection criterion only when the whole
system of science is considered, which accounts for the use of
non-Euclidean geometry in general relativity.

Although Cassirer fundamentally agreed with the latter con-
sequence of Schlick’s argument, he relied on group-theoretical
considerations to reintroduce epistemic constraints on the clas-
sification of geometrical concepts. The reason for this is twofold.
On the one hand, group theory offers a unified perspective on
geometry as part of intellectual mathematics. On the other hand,
the structure of geometrical concepts tells us something about
the concept of space and how we should proceed in the empirical
investigation of spatial relations:

In proportion as geometrical concepts gain in elegance and pre-
cision, the “world of space” is transformed for us, and other and
deeper strata come to light. “The gradual separation of affine and
projective geometry from metric,” says Klein, “may be compared
with the procedure of the chemist, who isolates increasingly valu-
able constituents from a compound by using constantly stronger
analytical reagents; our reagents are first affine and then projec-
tive transformations.” The analogy lies in this, that in progressing
from metric to affine and projective geometry we lay bare, deeper
and deeper layers of spatial forms because we reach those basic
spatial elements that prove invariant not only with respect to the
relatively limited transformations of the “principal group,” but to
those going on and on without end. (Cassirer 1950, 34)

What can be anticipated a priori is not a more or less general
form of space as given once and for all, but, firstly, the very
fact that the investigation of spatial concepts reveals several lay-
ers of forms, corresponding to the required degree of precision
of measurement. The space of sense perception, for example,
approximates the geometrical properties of a Euclidean space.
However, the generalized form of spatial intuition studied by
Helmholtz and the space-time of special relativity correspond to

the larger group of collineations. Secondly, according to Cassirer,
the history of science shows a tendency to achieve higher stan-
dards of precision, since increased precision in the formation
and specification of mathematical concepts, and thus increased
idealization, proceeds without limit. Riemannian manifolds of
variable curvature, for example, appeared to be purely analyti-
cal speculations before general relativity. In Cassirer’s eyes, the
application of Riemannian geometry in relativistic physics, how-
ever unprecedented, confirmed a general historical tendency
(Cassirer 1923, 440–42).

Cassirer agreed with Helmholtz’s empiricist philosophy of
geometry that the concept of the form of intuition can and has
to be generalized in the light of scientific developments. Nev-
ertheless, in reconsidering the necessity and general validity of
a priori knowledge with regard to the formation of geometrical
concepts, Cassirer opened the door to a transcendental argu-
ment.

As Patton noticed, Helmholtz’s epistemology in general poses
the problem of justifying the construction of systems of signs
that do not map onto the known properties of the objects con-
sidered independently: what justifies the scientist in her belief
that the theory nonetheless describes the phenomena as rep-
resented in the sign system? Patton summarizes Helmholtz’s
answer by saying that “we must trust that the regularities of na-
ture that that system describes map on to regularities in nature”
(Patton 2009, 284–85). Following Cohen, Cassirer addressed the
same problem by taking the a priori knowledge that is implicit in
the history of science as a condition of experience in the Kantian
sense.

Cassirer makes this point particularly clear in the follow-
ing consideration about the group-theoretical reading of Helm-
holtz’s derivation of spatial concepts:

Helmholtz’ exposition was based in particular on the concept of
group, though he had not grasped this idea so definitely nor ap-
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plied it so explicitly as did Lie and Klein afterward. It was shown
that in a three-dimensional space of constant curvature displace-
ments are possible that depend upon six parameters; thus there
is a sextuply infinite variety of movements. But now the point
of difficulty in the problem, from an epistemological standpoint,
was shifted. In order to obtain a trustworthy insight respecting
the meaning and origin of the various systems of axioms it is no
longer enough to analyze the idea of space; it is essential to keep
in mind the group concept itself. And in that regard we are in a
most favorable position, for the logical character of group theory is
hardly in doubt, being immediately obvious from its applications
and its evolution. (Cassirer 1950, 42)

Cassirer refers to Poincaré for a clarification of the idealizing
process that leads from our experiences with solid bodies to the
mathematical concept of group. Regarding the question whether
the general properties of space thus derived can receive an ad-
equate formulation in terms of axioms as well, Cassirer relies
on the following definition of axiom, which is borrowed from
Klein’s Elementarmathematik vom höheren Standpunkte aus (1925,
vol. 2: 202): “The axioms of geometry are, as I believe, not ar-
bitrary but rational propositions that in general are occasioned
by the perception of space and are regulated as to their individ-
ual content on the grounds of their purposiveness” (in Cassirer
1950, 43).20

4. Concluding Remarks

The earlier discussions suggest that Helmholtz’s empiricist ap-
proach led quite naturally to the idea of using the concept of
group as a primitive notion to articulate the concept of space.
However, several problems emerged from the later attempts to
provide Helmholtz’s reasoning with a more precise mathemati-

20I have slightly modified the English translation of Zweckmäßigkeitsgründe
in order to render the epistemological significance that Klein and Cassirer
attach to this term.

cal formulation. The first is that the approach of metrical geome-
try adopted by Helmholtz cannot provide a complete analysis of
the concept of space or there would be a problem of circularity
with such an analysis, if it would tacitly presuppose knowledge
of analytic geometry (in particular of the properties that depend
on the numeric representation of space). Poincaré’s geometrical
conventionalism offers a possible solution to this problem by
introducing all metrical concepts on a top-down approach, as
stipulations based on an explicit axiomatic formulation. How-
ever, as pointed out by Schlick, it will be impossible to provide a
consistent description of the most essential properties attributed
to spatial intuition by Helmholtz, and generally our intuitive no-
tion of space will have nothing to do with the construction of
the physico-mathematical concept of space.

I argued that a different way to overcome the charge of circu-
larity can be traced back to the earlier reception of Helmholtz’s
idea by Lie and especially Klein, who had developed himself
a twofold approach to mathematical structures: from the ge-
ometrical viewpoint of projective geometry, on the one hand,
and under the assumption of 3-tuples of real numbers to repre-
sent space, on the other. In Klein’s view, the outcomes of both
approaches are translatable into one another, because the for-
mation of mathematical concepts rests ultimately on rational
grounds (i.e., the introduction of the conceptual postulates that
regulate the relations within a particular domain). In Klein’s
methodology, this approach enabled the clarification of the re-
lations between different branches of mathematics and the dis-
covery of new applications. Cassirer spelled out some of the
philosophical implications of Klein’s structuralist methodology
by interpreting the concept of group as an a priori concept in the
sense of Marburg neo-Kantianism, namely, a presupposition for
the formation of spatial concepts that reveals itself historically.

Two further problems have been emphasized by Schlick’s ob-
jections against the group-theoretical characterizations of Helm-
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holtz’s mathematical reasoning given in retrospect by Lie, Klein,
Poincaré and still taken for granted in most of the literature.
First, would such a characterization be consistent with Helm-
holtz’s distinction between spatial intuitions and geometrical
axioms? Second, even if a distinction between more and less
general characteristics can be made in terms groups and sub-
groups of transformations, it remains unclear what properties
exactly should be included in the general ones in order to ac-
count for the preconditions for the possibility of measurement.
How do we know that the generalized form of intuition is the
right one and will not be replaced by a more general or even
completely different form?

I believe that the interpretative issue whether the characteri-
zation of Helmholtz’s foundation of measurement via the pro-
jective model of non-Euclidean geometry would be at least con-
sistent with what Helmholtz says can be answered affirmatively
based on the textual evidence considered earlier.

I have looked at Cassirer for a possible way to overcome the
second, more complex issue whether generalizing the form of
intuition is a viable strategy for dealing with the foundations
of measurement. A thorough discussion of Schlick’s concerns
about such a strategy would require us to say much more about
how Cassirer accounts for generalization in science also in con-
nection with his philosophical interpretation of general relativ-
ity. I have relied on his account of group-theoretical geometry
from 1940 here, because, in this connection, he draws particu-
lar attention to the heuristic aspect of mathematical researches
such as Riemann’s and Klein’s. The same aspect finds a power-
ful expression in the modern way to articulate space by laying
down a group of transformations, along with a variety of possi-
ble combinations, instead of immutable truths. So, the fact that
it might be problematic to provide a list of characteristics of the
form of space that are supposed to be valid once and for all,
as pointed out by Schlick, does not prove problematic to Cas-

sirer’s account. While Cassirer admits that the generalization
can proceed without an end, he imposes an epistemic constraint
on the generalizing process, insofar as idealization is guided by
the idea of exploring new hypotheses. This is the tendency that
Cassirer drew back to Helmholtz’s generalization of the form of
intuition, and that, according to him, found confirmation in the
revolutions of twentieth-century physics.
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