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Frege on the Foundation of Geometry in Intuition  
Jeremy Shipley  

I investigate the role of geometric intuition in Frege’s early math-
ematical works and the significance of his view of the role of intui-
tion in geometry to properly understanding the aims of his logicist 
project. I critically evaluate the interpretations of Mark Wilson, 
Jamie Tappenden, and Michael Dummett. The final analysis that I 
provide clarifies the relationship of Frege’s restricted logicist pro-
ject to dominant trends in German mathematical research, in par-
ticular to Weierstrassian arithmetization and to the Riemannian 
conceptual/geometrical tradition at Göttingen. Concurring with 
Tappenden, I hold that Frege’s logicism should not be understood 
as a continuing a project of reductionist arithmetization. However, 
Frege does not quite take up the Riemannian banner either. His 
logicism supports a hierarchical understanding of the structure of 
mathematical knowledge, according to which arithmetic is appli-
cable to geometry but not vice versa because the former is more 
general, as revealed by the strictly logical nature of its objects in 
comparison to the intuitional nature of geometric objects. I sug-
gest, in particular, that Frege intended that foundational work 
would show the use of geometric intuition in complex analysis, a 
source of error for Riemann that Weierstrass was proud to have 
uncovered, to be inessential.  
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Frege on the Foundation of Geometry in 
Intuition  

Jeremy Shipley  

1. Introduction 

Early in his career, Frege made geometrical models of algebra. He 
was a mathematician, and his motives were plainly mathematical 
and obviously influenced by the Göttingen mathematics depart-
ment where he earned his doctorate. Like Cauchy and Gauss, he 
sought an intuitive basis for understanding the complex numbers, 
but he was influenced by the neo-Kantian philosopher Lotze as 
well and took a more philosophically restricted view of geometry 
than Gauss’s protégé Riemann. Frege’s early mathematical work 
displays presuppositions about geometry and geometrical intui-
tion that provide insight into the mathematical and philosophical 
motivations for Frege’s logicist project, and in particular for the 
restriction of that project to arithmetic.  

In this essay I investigate Frege’s understanding of the rela-
tionship between geometry and arithmetic. Throughout his career, 
from his early mathematical works on, he maintained that geome-
try concerns specific objects of intuition. An important feature of 
Frege’s philosophy of mathematics is his conception of arithmetic 
as more general than geometry; indeed, showing that arithmetic 
participates in the generality/universality of logic was a primary 
motivator for Frege’s brand of logicism. We will begin with an 
assessment of Michael Dummett’s analysis of Frege’s comments 
on geometry in Die Grundlagen der Arithmetik, then will support 
the overall picture of Frege’s view of geometry by investigating 
Frege’s early work and Mark Wilson’s commentaries on their sig-
nificance for understanding his project and by supporting and 

refining Jamie Tappenden’s thesis that Frege’s work is best situat-
ed in relation to the Riemannian rather than Weierstrassian school.  

2. Geometry in the Grundlagen   

In this section I articulate my view of Frege’s mature philosophical 
position on the foundations of geometry. I begin with a discussion 
of Lotze, which admittedly draws heavily from the commentary of 
Roberto Torretti. The discusssion of Lotze sets the stage for an 
assessment of Michael Dummett’s commentary on the sections of 
Die Grundlagen der Arithmetik that deal with geometry. In particu-
lar, I want to position Frege as aligned philosophically with Kanti-
an critics of non-Euclidean geometry. Since I will argue that Frege 
distinguishes geometry from arithmetic in virtue of the former’s 
reliance on intuition, it is important to address statements he 
makes that might be taken to divorce the objective content of ge-
ometry from subjective, sensible intuition.  

While Frege’s mathematical influences were, as we will dis-
cuss subsequently, certainly broadly Riemannian, his philosophi-
cal influences included the neo-Kantian Hermann Lotze, from 
whom Frege took his only philosophy course at Göttingen.1 Lotze 
was chair of the Göttingen faculty during the controversy over the 
philosophical faculty’s reception of Riemann’s habilitation lecture. 
The topic was chosen by Gauss himself, and Riemann expounded 
his foundational conception of manifolds of arbitrary dimension 
and curvature. Roberto Torretti summarizes Lotze’s response and 
the philosophical point of view that informed it:  

To his mind, the new geometric speculations were “just one big con-
nected mistake” (Lotze, 1879, 234). His criticism of them is set in the 
context of his metaphysical theory of space. This theory, like Erd-
mann’s, is conceived in terms of the duality of Mind and Things. Ac-
cording to Lotze, space can exist only as space intuition, that is, only 
insofar as the Mind is aware of it (211). But space is not a mere ap-
pearance to which nothing corresponds in reality (im Reellen). “Every 
particular trait of our spatial intuitions corresponds to something that 
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is its ground in the world of things.” But such ground does not in any 
way resemble spatial relations. “Not relations, spatial or intelligible, 
between things, but only immediate interactions, which things inflict 
one another as internal states, are the actual fact whose perception is 
woven by us into spatial phenomenon” (223) (Torretti, 1978, 286).  

Torretti notes that although Lotze’s commentary indicates a care-
less lack of understanding of the Riemannian direction of general-
ization of geometry, there are nuggets of insight, such as an ap-
parent anticipation of Poincaré’s conventionalism. One might add 
that Lotze also anticipates certain structuralist views in scientific 
epistemology.2 One aspect of Lotze’s criticism is the merely verbal 
point that geometry has traditionally been the study of what we 
call “space”, which according to his metaphysics is fixed in the 
content of intuition. Lotze, in fact, admits of the possibility of non-
humans that, in Torretti’s characterization, “perceive in a different 
fashion the same aspects of things which we perceive in space” 
(Torretti, 1978, 289). But behind this verbal point is a substantive 
dispute. Riemann, as well, reserved “space” for the space that we 
perceive, using the generic term “manifold” for “the general no-
tion of multiply extended magnitudes (in which space magnitudes 
are included)” (Riemann). However, Torretti notes, Riemann was 
skeptical that the spacial manifold of appearances could by intro-
spection alone be determined as Euclidean while Lotze was with-
out doubt. Doubt concerning the truth of the parallel axiom in the 
space determined ostensively as the manifold of appearances may 
be one reason, though only one, why it was natural for Riemann 
and the mathematicians at Göttingen to adopt a more general con-
ception of geometry; even with respect to the fixed subject matter 
of perceptual space they considered the geometric structure to be 
under determined.  

Frege appears to have been in agreement with Lotze that the 
space of intuition is undoubtedly three dimensional and flat, and 
that the axioms of Euclid characterize self-evident truths concern-
ing geometrical planar objects situated in space, although Frege’s 
view of “intuition” will be up for interpretation and should not be 

assumed to agree with the strictly subjective, psychological view 
implied by Torretti’s characterization of Lotze’s view.3 That geom-
etry is founded, in some sense, on intuition is the tacit view of his 
early geometric works and the explicitly stated view in his corre-
spondence with Hilbert and subsequent essays on the foundations 
of geometry. There is, however, a passage in Grundlagen that com-
plicates the interpretation of Frege’s view of intuition. In §26 Frege 
writes:  

Space, according to Kant, belongs to appearance. For other rational 
beings it might take some form quite different from that in which we 
know it. Indeed, we cannot even know whether it appears the same to 
one man as to another; for we cannot, in order to compare them, lay 
one man’s intuition of space beside another’s. Yet there is something 
objective in it all the same; everyone recognizes the same geometrical 
axioms, even if by his behavior, and must do so if he is to find his way 
about in the world. What is objective in it is what is subject to laws, 
what can be conceived and judged, what is expressible in words. 
What is purely intuitable is not communicable. To make this clear, let 
us suppose two rational beings such that projective properties and re-
lations are all that they can intuit —the lying of three points on a line, 
of four points on a plane, and so on; and let what the one intuits as a 
plane appear to the other as a point, and vice versa, so what for the 
one is the line joining two points for the other is the line of intersec-
tion of two planes, and so on with the one intuition always dual to the 
other. (Frege, 1980b, §26).  

Noting the duality of projective geometry (viz. that swapping the 
terms “point” and “line” in any theorem yields another theorem), 
Frege argues that the difference in subjective intuition would be 
no barrier to communication.  

According to Dummett this passage distinguishes Frege from 
Kant because for Kant both our understanding of the meaning of 
geometric terms and propositions and our grasp of their truth de-
pend on, presumably subjective, intuition. According to Dummett, 
that the communicable content of geometry is held by Frege to be 
independent of intuition shows that the only dependence that ge-
ometry has on intuition is epistemic. We could, in principle, grasp 
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the meaning of geometric propositions (as a blind man can form 
the concept red and aptly use the predicate “red” in communica-
tion) without having any intuition whatsoever. In this sense, ge-
ometry is objective for Frege. However, Dummett argues, it is be-
cause we have the intuitions that we do have that we cannot imag-
ine the axioms of geometry being false:  

We cannot imagine what it would be like for the axioms of geometry 
to be false, but we can conceive of their falsity, that is, we can think 
their negations: it follows that their senses are capable of being wholly 
grasped by conceptual thought in a manner that involves no allusion 
to our intuitions. It is on the basis of a priori intuitions of space that we 
accept those axioms as true; but the features of those intuitions which 
the axioms capture are ones which, as being expressible in words, are 
common to all and could, therefore, be grasped even by a subject 
whose intuitions differed from ours (Dummett, 1982, 250).  

Dummett’s interpretation is enticing. It makes sense of how Frege 
can in the same text endorse the claim that Kant was correct that 
geometry is synthetic a priori and write a passage such as §26, and 
his interpretation allows for an initial reconciling of §26 with Fre-
ge’s repeated insistence that geometry is founded in intuition, 
both prior to Grundlagen and after in his correspondence with Hil-
bert and subsequent writing on the foundations of geometry. Ge-
ometry is founded on intuition in a merely epistemic sense, but 
the objective content (the meaning) of geometric propositions is 
independent of intuition.  

However, upon further reflection this interpretation presents a 
puzzle. If the contents of geometric propositions, including the 
axioms, are entirely unrelated to our intuition then how could our 
intuition provide any assurance of the truth of the axioms? Fur-
thermore, the foundation of geometry in intuition pertains, as Fre-
ge stresses in his opposition to Hilbert, to the semantic matter of 
correct definitions and not merely to the epistemic concerns 
stressed by Dummett. Indeed, the relationship between definitions 
and axioms is central to Frege’s criticisms of Hilbert and the cen-
tral matter of this dispute is the relationship of geometry to intui-

tion. Axioms are intuited truths about intuited objects, and proper 
definitions are nominal because the meanings of the terms con-
tained in the definiens are independently grasped, according to 
Frege. In an essay “Foundations of Geometry I” (1903) responding 
to Hilbert’s Grundlagen der Geometrie Frege expounds:  

In mathematics, what is called a definition is usually the stipulation of 
the meaning of a word or sign. A definition differs from all other 
mathematical propositions in that it contains a word or sign which 
hitherto has had no meaning, but which now acquires one through it. 
All other mathematical propositions (axiomatic ones and theorems) 
must contain no proper name, no relation-word, no function-sign 
whose meaning has not previously been established... [Definitions] 
are arbitrary and thus differ from all assertoric propositions... No def-
inition extends our knowledge. It is only a means for collecting a 
manifold content into a brief word or sign, thereby making it easier 
for us to handle (Frege, 1984, 274).  

In the case of geometry, Frege’s strictures on definition require a 
basic grasp of fundamental terms. Dummett’s interpretation of §26 
leaves it obscure what this fundamental grasp may consist in. In-
deed, Dummett’s interpretation seems to me to risk pressing Frege 
into a position on geometry that is not entirely unlike the one 
adopted by Hilbert, which he vigorously disputes. For, if the 
meaning of basic terms in geometry is founded on nothing other 
than public inferential agreement then it would seem that mere 
assent to the axioms and their consequences may be constitutive of 
grasping their meaning.  

To resolve these puzzles about §26, I propose paying close at-
tention to a potentially important distinction between intuition 
(Anschauung) and pure intuition (reine Anschauung). In an earlier 
passage, criticizing Hankel’s proposal to found a theory of the real 
numbers on an intuition of magnitude Frege writes:  

The expression ’pure intuition of magnitude’ gives us pause. If we 
consider all the different things that are called magnitudes: Numbers, 
lengths, areas, volumes, angles, curvatures, masses, velocities, forces, 
illuminations, angles, curvatures, and so forth, we can quite well un-
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derstand how they can all be brought under the single concept of 
magnitude; but the term ’intuition of magnitude,’ and still worse 
’pure intuition of magnitude’, cannot be admitted as appropriate. I 
cannot even allow an intuition of number in general, not to mention 
magnitude in general. We are all too ready to invoke inner intuition, 
whenever we cannot produce any other ground of knowledge. But we 
have no business, in doing so, to lose sight altogether of the sense of 
the word ’intuition’ (Frege, 1980b, §12).  

Frege continues, claiming that Kant himself has both a wide and a 
narrow sense of intuition. In Kant’s Logik, Frege notes, an intuition 
is contrasted with a concept insofar as the former is individual 
while a concept is general. Respecting the wide sense of intuition 
“there is absolutely no mention of any connexion with sensibility.” 
The connection with sensibility arises only in the narrower sense 
of intuition in Transcendental Aesthetic. For Frege, the modifiers 
“pure” and “inner” are used to indicate the narrow sense of intui-
tion. With this in mind, the passage of §26 can be read as indicat-
ing only that geometry does not depend on intuition in the narrow 
sense.4 

It is in the broader sense of intuition drawn from Kant’s Logik 
that we should understand Frege as holding that geometry, both 
semantically and epistemologically, depends on intuition. The 
passage of §26 is resisting both Kant’s and Lotze’s strictly subjec-
tive understanding of geometry as resting on pure intuition. As 
Torretti has noted, Lotze considered the very sort of case that 
Dummett considers a specifically Fregean, un-Kantian concern:  

Space, as we know it, may be conceived as a special case of the more 
general concept of an ’order system of empty places’. Nothing pre-
vents us from conceiving several different species of this generic con-
cept, structured by rules other than those that govern space. Other be-
ings might exist, who perceive the same world of things as we do, but 
under one of these alternative order systems. It is possible that they 
perceive in a different fashion the same aspects of things which we 
perceive in space, or that the peculiar structure of their intuition ena-
bles them to perceive other aspects of things, which are inaccessible to 
us. Lotze will not dispute these possibilities. There is, in fact, no way 

of knowing whether they are fulfilled or not. But Lotze emphatically 
rejects the contention that other beings, unknown to us, could have a 
spatial intuition different from ours (Torretti, 1978, 287)  

Frege disagrees with Lotze on precisely this point. The §26 pas-
sage indicates that subjects with differing pure intuitions may 
nevertheless communicate about the same space. Hence for Frege 
space is located objectively rather than subjectively. However, 
Frege agrees with Lotze’s position, the core of his criticism of non-
Euclidean geometry, that the propositions of geometry, ordinarily 
understood, are singular propositions incapable of generalization. 
Importantly for my understanding of Frege’s views on geometry, 
the intuition on which geometry rests is intuition in the individuat-
ing sense, so that geometry is the objective science of a particular 
domain. I do not think, however, that Frege anywhere adequately 
articulates his view of the relationship between pure intuition and 
intuition in the wider sense. It is tempting to think of the relation-
ship between pure intuition and individuating intuition in terms 
of the sense and reference, with pure intuitions providing senses 
that pick out, perhaps in various ways for various subjects, geo-
metrical referents about which we objectively communicate. This 
suggestion extends beyond the concern of the present essay, 
which is to articulate Frege’s view of the logical structure of our 
mathematical knowledge.  

3. Geometric Representation  

I now turn to an investigation of Frege’s mathematical works, 
which will clarify and support the claims of the preceding section. 
In his dissertation, On a Geometric Representation of Imaginary Forms 
in the Plane, Frege constructs geometric models of functional rela-
tions (imaginary forms) between complex numbers. The work 
begins with an analogy between points at infinity and imaginary 
forms. The notion of a point at infinity, he says, is technically non-
sense since it “would be the end of a distance which had no end.” 
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Frege then notes that we may identify points at infinity with 
“what is common to all parallels”: viz., their direction. The puz-
zling “points at infinity” are identified with directions. Directions 
are defined by mentioning only objects and relations that are puta-
tively given in intuition: viz., the relation of parallelism between 
lines. By calling directions “points”, two ways of describing a line 
are unified. The statement “a line is determined by a point and a 
direction” becomes a special case of “a line is determined by two 
points”: viz. the case where one point lies “at infinity” (Frege, 
1984, 1-3).  

Though technically nonsensical, the phrase “point at infinity” 
is quite expedient. Kepler, in his work on conic sections, assimi-
lates the parabola to the ellipse:  

In the parabola one focus lies within the curve, while the other is rep-
resented either outside or within it on its axis at an infinite distance 
from the first, so far that a line drawn from that blind focus [at either 
end] to every point of the curve is parallel to the axis5.  

If conic sections are taken as a function of eccentricity (fixing the 
main focus and the directrix) the second focus of the ellipse ap-
proaches infinity as the eccentricity approaches 1. At 1 the section 
is a parabola. Past eccentricity 1 the section is a hyperbola and the 
second focus is found on the opposite side of the directrix from the 
major focus.  

Geometric freethinkers, unburdened by tradition, may de-
scribe the location of the second focus of the parabola as a limit of 
the locations of the foci of successive ellipses; the notion of the 
second focus of the parabola being located “at infinity” is suggest-
ed. Indeed, it is inviting to describe the second focus racing ever 
more swiftly toward infinity as the eccentricity approaches 1, then 
passing through infinity to the opposite side of the plane, though 
it is not clear how to associate specific mental images with all the 
geometric terms of this description. Worried about the status of 
unintuitive geometrical objects, Frege articulates the voice of Eu-
clidean tradition. As enticing as this description may be, from Fre-

ge’s point of view in his dissertation, strictly speaking to say that 
the second focus of a conic section is “at infinity” is just to state 
prosaically that the conic section lies asymptotically between two 
parallel lines. One identifies the point at infinity with the shared 
direction of the asymptotes.6 

If the direction of a line is the set of lines parallel to it then the 
sequence of second foci, all of them spatial points, are described 
by the freethinker as “converging” by motion through space to a 
non-spatial object.7 This uncomfortable situation, which may be 
regarded as a kind of ontological discontinuity, can be avoided in 
certain geometric representations of infinity. Consider the Rie-
mann sphere as a representation of the extended complex num-
bers (extended to include a point at infinity). Projected onto the 
Riemann sphere, a solitary point at infinity is represented by the 
apex of the sphere. Some sequences that are divergent in the plane 
project to sequences that converge to the apex of the sphere.  

Of course, the Riemann sphere includes, as I have mentioned, 
only a solitary point representing infinity. Projective geometry on 
the plane requires a distinct point at infinity in every direction. 
What I wish to illustrate by the Riemann sphere example, howev-
er, is that there are geometric representations, of which Frege was 
surely aware, in which the, strictly speaking nonsensical, point at 
infinity is identified with an ordinary point in a higher dimension. 
This suggests the possibility of identifying points at infinity (and 
other ideal objects arising in geometry) with geometrical objects 
rather than logical objects. However, I think that Frege does not 
embrace this possibility. Frege contends that geometry is founded 
on intuition, which limits our ascension to higher dimensions be-
cause we have no intuition of spaces of greater than three dimen-
sions. This is not to say that, according to Frege, there may not be 
synthetic, geometrical representations of analytical relations de-
fined in more than three coordinates, but that the representations 
are intuited geometric objects which cannot be identified as the 
unique denotations of analytic terms. The Riemann sphere pro-
vides such a geometric representation of the extended complex 
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numbers, for example, but the complex numbers are not them-
selves to be identified with the objects constituting the representa-
tion.  

Frege’s early work sought to obtain intuitive representations of 
analytic relations on greater than three parameters using strategies 
of embedding and representation to reduce the analytic dimension 
number of the relation. His dissertation concerned representation 
of complex forms, and illustrates this use of intuitive geometry. 
Pairs of complex numbers are represented as lines between paral-
lel planes labeled “real” and “imaginary”, each of which have an 
intuitive planar geometry. The ordered pair { x + x’i, y + y’i } is 
represented by {{x, y}, {x’, y’}} and may be depicted by a line 
drawn between parallel planes in which { x, y } and { x’, y’} are 
respectively situated. Frege determines that a complex line y + y’i 
= (m + m’i) (x + x’i) + (b + b’i) can be regarded as determining a 
mapping from the real plane containing {x, y} to the imaginary 
plane containing { x’, y’}. For this to work we should be able to 
obtain functions f and g such that x’=f (x, y) and y’=g(x, y). By ele-
mentary algebra:  

y+y’i = (m+m’i)(x+x’i)+(b+b’i) =  
y+y’i = (mx−m’x’ +b)+(mx’ +m’x+b’)i  

So that, separating real and complex parts, gives:  

(1) y = mx−m’x’ +b and (2) y’ = mx’+m’x+b’.  

Solving for x′ in (1) gives:  

(3) x′ = 
!"!!!!      

!’   
 

"Substituting (3) into (2) gives:  

(4) y’ = m(
!"!!!!      

!!
)+m’x+b’ 

By a subtle manipulation of the coordinates for the real and imag-
inary planes, Frege obtains from the mapping relation a represen-
tation of the complex line by pairs of “guide lines” located above 
and below the real and imaginary planes. The figure shows Fre-
ge’s illustration of the geometric relation generated by treating 
complex linear equations as expressing mapping relations be-
tween parallel planes with suitably oriented coordinates.  
 

 
This general strategy is repeated for complex figures other than 
lines as the study of complex lines by their representative guide 
lines is generalized to a study of complex forms by guide surfaces. 
To work through the finer points of Frege’s approach to providing 
representations of complex forms is not necessary for the purpose 
of illustrating Frege’s perspective on analytic geometry. Frege is 
concerned to show that analytic relations are to be regarded as 
geometrical and intuitable by constructing geometrical representa-
tions. In Frege’s representation of imaginary forms, non-intuitive, 
analytic relations between complex numbers are represented in 
intuition as relations between such objects as guide lines. It is in 
the context of such representations that the application of intuitive 
geometrical concepts, like intersection, to analytically defined 
complex forms is licensed.  
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What did Frege conceive to be the value of the intuitive repre-
sentations he constructs? What are they for? Such representations 
may be regarded as either having an ancillary, heuristic role or as 
having an essential place in mathematical justification. The tension 
between these views of representation in intuition is present al-
ready in Gauss. Notably, Gauss was, early in his career, guarded 
about the role that his geometric representation of the complex 
numbers played in his reasoning. José Ferreirós notes that Gauss’ 
first published proof of the fundamental theorem of algebra delib-
erately avoided the geometrical considerations which appear in 
his later proofs. One may speculate that this early reticence to re-
veal the geometric source of discovery suggests a strictly heuristic 
role for geometric representations; Gauss’s geometric reasoning 
illustrates a method of discovery, while the earlier proofs provide 
the logically rigorous justification. As Ferreirós documents, Gauss’ 
stated view was that the use of geometric representations provid-
ed intuition and simplicity but did not reveal the “true content” of 
the theorems proven by their means (Ferreirós, 2007, 54-55):  

I will present the proof in a dressing taken from the geometry of posi-
tion since in this way it attains its maximum intuitiveness and sim-
plicity. But in essence the true content of the whole argument belongs 
to a higher domain of the abstract theory of magnitudes, independent 
of the spatial, the object of which is the combinations, among magni-
tudes linked by continuity, a domain which until now has been little 
cultivated, and where we cannot move without language taken from 
geometrical images (Gauss, 1973, vol 3, 79).  

I take Gauss’ talk of “true” and “higher” content to be suggest-
ing that the theorems derived express general propositions that 
hold true in domains other than the specific domain of geometrical 
representations that may guide the mathematician’s reasoning. 
The quotation does not exactly make the philosophically neat dis-
tinction between discovery and justification that one might like to 
see. While Gauss’ comment that the “dressing” of geometrical 
language does not reveal the higher content of the theorem sug-
gests a merely heuristic role for geometric concepts, the statement 

that “we cannot move” without this language suggests an essen-
tial role for geometric concepts that cannot be eliminated in the 
context of justification.  

Frege, I shall maintain, was motivated by epistemological con-
cerns directly related to the use of geometrical images to study a 
strictly more general content, and thus took an implicitly critical 
stance toward Riemann’s approach to complex analysis. Frege’s 
project, to be modeled on the logicization of arithmetic, was aim-
ing to show that reasoning about the higher content suggested by 
Gauss can indeed be undertaken without geometric language. 
Gauss, of course, would ultimately champion Riemann’s efforts to 
extend the application of specifically geometrical concepts in 
mathematical reasoning, treating those concepts as essential both 
to discovery and justification in the context of mathematics con-
ceived as founded in a general theory of manifolds. In the Rie-
mannian approach geometrical concepts were expanded to apply 
beyond immediate spatial intuition, toward the comprehension of 
properties of manifolds beyond those available to immediate spa-
cial intuition. I maintain first that Frege was skeptical that geomet-
rical concepts could be expanded because he thought geometrical 
concepts were tethered to intuition, and second that he held that 
geometrical intuition had a primarily heuristic role in the investi-
gation of complex functions.  

Frege’s scattered remarks in his early works on geometric rep-
resentations do not directly establish whether he sought geometric 
representations for heuristic value or held geometric concepts to 
be essential or foundational for higher mathematics such as com-
plex analysis. Concerning his geometric representations, he writes 
that “these examples may suffice to show how propositions of 
plane geometry can be translated into our method of representa-
tion, and how relations which are quite nonintuitive, or even in 
conflict with all our intuitions, are made visible by this method in 
a very simple way,” but this merely describes the outcome of the 
method not the purpose (Frege, 1984, 38). After investigating some 
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basic examples of complex forms represented by his methods, 
Frege writes:  

These hints may suffice to give a general idea of the nature of guide 
surfaces and how they can be investigated. It cannot be denied that 
these figures are usually so complicated that the aim of making imag-
inary relationships intuitable can be achieved only to a very imperfect 
degree, at least without models. This desire can be completely ful-
filled only in the case of the simplest and most elementary, but for 
this reason also most important, relationships. However, in the case of 
these more complicated figures another use comes to the fore: it is 
possible for us to take the properties of very simple figures of one or 
two dimensions and by mere translation use them to investigate the 
nature of far more complicated figures of a higher dimension (Frege, 
1984, 45).  

We should not expect that the methodological motives for Fre-
ge’s later logicism are clearly present in his early geometric works, 
especially not in the dissertation. One may read this passage as 
supporting a merely heuristic role for intuitive representation by 
emphasizing the phrase “to investigate the nature” as indicating a 
context of discovery. However, I think this forces the text into con-
formity with an interpretation, where in fact there is genuine am-
biguity, and it seems to me that Frege also suggests here that by 
“mere translation” of properties from simple and elementary cases 
to higher dimensions we may in fact justify our conclusions.  

I think Frege later becomes more clearly skeptical about math-
ematical arguments that involve generalization from intuitive cas-
es. I gather from Frege’s approach to mathematical foundations 
that his later, considered view would have been closer to the con-
servative view that geometric reasoning can have only a heuristic 
role in higher analysis. In his early works it is obscure whether he 
maintained that his geometric representations have heuristic value 
only. As I will argue a much clearer position is implicit in his 
foundational works. However, even in the early works Frege’s 
conservative attitude toward geometry is shown the fact that he 
restricts his representations to geometric objects residing in two 

and three dimensional Euclidean space. Indeed, such objects seem 
to be the only objects Frege recognizes as properly geometric ob-
jects. Due to the restrictions Frege’s conception of intuition place 
on the terms, concepts, and relations of geometry it is difficult to 
see how he could have, upon consideration, assigned intuition any 
role other than as a fruitful and important guide to discovery. By 
the writing of Grundlagen contexts of discovery and of definition 
or justification are importantly distinguished as Frege states 
“Never again let us take a description of the origin of an idea for a 
definition, or an account of the mental and physical conditions on 
which we became conscious of a proposition for a proof of it” 
(Frege, 1980b, I-VIe). While this statement occurs in the context of 
a characteristically Fregean polemic against arithmetic formalism 
it can equally well be applied as criticism of any view that would 
mistake an heuristic role of geometry in investigating higher anal-
ysis for an indispensably justificatory role or as providing defini-
tions.8 On the Fregean view, concrete representations of mathe-
matical forms, whether formal arithmetic or intuitive geometric, 
never exhaust the content of the logical truths in which they par-
take.  

4. Ghost Points and the Context Principle  

A different relationship between Frege’s ideas about logic and his 
work in geometry has been suggested by Mark Wilson. In a series 
of articles and lectures, Mark Wilson has recently discussed Fre-
ge’s philosophy of mathematics in light of approaches taken to the 
introduction of ideal terms in geometry by his predecessors von 
Staudt and Plücker (Wilson, 1992, 2006, 2010). Von Staudt intro-
duced ideal elements in geometry as logical objects, which we 
may associate with equivalence classes but which von Staudt (and 
Frege) may have considered as primitive concept correlates rather 
than classes. (Wilson, 1992) holds that Frege draws from von 
Staudt’s method to frame his logicist program for arithmetic. (Wil-
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son, 2006) suggests that Frege may have considered Plücker’s ana-
lytic approach to projective geometry as vindicating certain syn-
thetic geometers’ views that ideal elements are in fact geometrical 
objects, but (Wilson, 2010) provides a “relative logicist” reading of 
Frege’s attitudes toward ideal elements which seems to return to 
von Staudt’s synthetic point of view. The discussion to follow is 
focused as criticism of (Wilson, 2006). In “Ghost World”, Plücker’s 
approach is presented by Wilson as vindicating the view of syn-
thetic projective geometers that ideal elements are geometric ob-
jects on par with ordinary points, lines, etc. According to Wilson, 
the homogeneous coordinate system employed by Plücker (de-
scribed below) provides a crucial context for understanding Fre-
ge’s famed context principle, one of three guiding methodological 
principles of Die Grundlagen der Arithmetik which instructs us to 
“never ask for the meaning of a word in isolation, but only in the 
context of a proposition” (Frege, 1980b, Xe).  

Plücker uses homogeneous coordinates as a framework for an-
alytic projective geometry. In Plücker coordinates a point in the 
plane is coordinatized by an ordered triple (x1 : x2 : x3) (not all 0), 
with the convention that (ax1 : ax2 : ax3) are coordi nates for the 
same point as (x1 : x2 : x3). This gives “homogeneous coordinates” 
for the projective plane ℙ2. For appropriate homogeneous coordi-
nates, Cartesian planar coordinates may be recovered as ( !!

! !  , 
!!
!!). 

When x3 = 0, however, a planar coordinate is not defined. We also 
have coordinates for lines as ordered triples in the following nota-
tion [X1 :X2 : X3], with the condition that the point (x1 : x2 : x3) lies on 
the line [X1 :X2 : X3] when (and only when) x1X1 +x2X2 +x3X3 = 0. In 
the special case that x3 ≠ 0, if we set x =  !!!!   , y =  !!!!   , a = X1, b = X2, 
and c = X3 we have that (x : y : 1) lies on [a: b: c] exactly when 
ax+by+c = 0, recovering the familiar algebraic expression for a line. 
The use of homogeneous coordinates thereby generalizes familiar 
formulas from the Cartesian to the projective plane, and does so in 
a way that establishes a clear notational duality between point and 
line, insofar as each is represented by an ordered triple.9 

The notation (x1 : x2 : x3) : [X1 : X2 : X3] expresses the incidence of 
a point upon a line. Such expressions decompose into a variety of 
truth-valued functions by replacing constants with variables. The 
incidence relation itself may be treated as a binary truth-valued 
function taking point and line coordinates as arguments. In gen-
eral, one obtains unary functions such as (x1 :x2 :ζ ):[X1 :X2 : X3],(x1 

:x2 :x3): [ζ’ :X2 :X3](etc.),binary functions such as(x1 :ζ’ :ζ’’):[X1 : X2 : 
X3],(x1  :x2 : ζ’): [X1 : X2 : ζ’’] (etc.), as well as ternary functions and so 
forth. This situation recalls a discussion in Begriffsschrift, in which 
Frege notes that different functions may be parsed from the ordi-
nary language sentence ’Cato killed Cato’, and Frege may indeed 
have had in mind, there, a generalization from the specifically 
arithmetic setting of the multiple parsings of incidence expres-
sions in Plücker coordinates as a basis for his general concept-
script (Frege, 1952, §9).  

Within this broader context, Wilson argues, Frege held that 
expressions in homogeneous coordinates for points at infinity ob-
tain objective significance. Consider, first, the restriction to func-
tional expressions (x1 : x2 : x3) : [ζ’ : ζ“ : ζ“‘] such that (x1 : x2 : x3) 
may be represented by the Cartesian point (!!!!  , 

!!
!!  ,). The course of 

values of this function is the “pencil” of lines through (x1 : x2 : x3): 
i.e., the lines intersecting that point. Now, functional expressions 
of the form (x1 : x2: 0) : [ζ‘ : ζ“ : ζ“‘] are just as well behaved. The 
course of values of such a function is just a range of parallel lines. 
With (x1 : x2 : 0) : [ζ‘ : ζ“ : ζ“′ ] as well behaved functions, singular 
expressions of the form (x1 : x2 : 0) may now occur as values of 
functions of the form (ζ’  : ζ’’ : ζ’’’ ) : [X1 : X2 : X3]. “Voila!” writes 
Wilson, “a suitable ’point at infinity,’ prized from the woodwork 
of bland geometrical fact through no other means beyond the twin 
processes of explicitly defined conceptual enlargement and a 
Plückerish reorientation of functional activity” (Wilson, 2006, 12). 
Elaborating on the significance of this method for Frege’s later 
projects, Wilson writes:  
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Here, then, is the original purpose of the context principle as I recon-
struct it. Introduce by definitional extension a brace of new names 
and predicative expressions, in a manner such that a well behaved range 
of syntactic surrogates for the desired imaginary and infinitely distant 
points appear. Then argue philosophically that, since the newly intro-
duced names behave exactly like those for accepted forms of object, 
these new specimens should qualify, in the same fashion as Frege’s 
point-pairs, as “just as good,” ontologically, as regular points. Here 
our Plückerish capacity to reverse the predicative activity within a 
complete thought is integral to this convention. But if such tenets are 
accepted, we require no axiom V to install our new points —or natu-
ral numbers —upon the mathematical stage (Wilson, 2006, 13).  

Wilson suggests that homogeneous coordinates provide a frame-
work for understanding the introduction of ideal elements in pro-
jective geometry according to which such objects retain retain 
something of a geometrical character, rather than being replaced 
by logical constructs, such as class of parallel lines. Plücker, as 
Wilson tells it, thereby vindicates vaguer, quasi-mystical descrip-
tions of “ghost points” given by earlier projective geometers Stei-
ner and Poncelet by providing a rigorous system of coordinates 
for analytic projective geometry. Furthermore, Wilson speculates 
that Frege would have hoped that the philosophical account for 
introducing ideal elements in geometry could be applied to intro-
duce numbers themselves as ideal elements without appealing to 
Basic Law V.  

The case to be made for Wilson’s interpretation is largely cir-
cumstantial. To be sure, there are passages in Grundlagen suggest-
ing that Frege may have held out vague hope for a general theory 
of concept correlates that are not extensions of concepts, and Wil-
son’s speculation provides an initially plausible account of what 
that might amount to. However, it is likely that Frege maintained 
that concept correlates, whether conceived as extensions or not, 
are always logical objects stripped of any specific characteristics of 
the domains in which they arise. Furthermore, there are both tex-
tual and systematic reasons for holding that Wilson’s account 
must be considered highly speculative.  

First, consider the direct textual evidence that Wilson does 
give. Frege, to be sure, makes use of Plücker coordinates in some 
of his mathematical work, such as the short work “Lecture on the 
Geometry of Pairs of Points in the Plane” (Frege, 1984). Wilson 
characterizes this lecture in terms of the strategy he attributes to 
Frege (and Plücker) of using homogeneous coordinates to vindi-
cate the introduction of ideal elements in projective geometry as 
geometric objects:  

Frege employs the trick of reversing the direction of functional activi-
ty in a formula (he utilizes the line equation for a degenerate conic) in 
order to produce suitable coordinates for pairs of points regarded as 
comprising single fused entities. That is, Frege invites us to look upon a 
regular Euclidean plane and “see” it, not as decomposing into solitary 
points, but instead as fragmenting into a gaggle of point-partnerships 
bound irrevocably together over long distances (this remotely paired 
structure is hard to visualize as it constitutes a four dimensional, 
nonEuclidean geometry) (Wilson, 2006, 10).  

I am not convinced that this correctly characterizes Frege’s aims in 
the lecture. Wilson reads Frege as asking us to “see” the familiar 
and intuitable pairs of points in an unfamiliar and unintuitive 
way: viz., as a fused entity in four dimensions. I read Frege’s ob-
jective in this essay differently. He is asking us to understand an 
unfamiliar, unintuitive four dimensional “geometry”, presented to 
us analytically, by the familiar intuition of pairs of points in three 
dimensions. Here is how Frege introduces the lecture:  

One of the most far-reaching advances made by analytic geometry in 
more recent times is that it regards not only points but also other 
forms (e.g., straight lines, planes, spheres) as elements of space and 
determines them by means of coordinates. In this way we arrive at 
geometries of more than three dimensions without leaving the firm 
ground of intuition. The geometry of straight lines for example is a 
four dimensional one, and so is the geometry of spheres. But there is a 
difference between the two, in that a sphere can always be deter-
mined unequivocally by four numbers, whereas it would seem that 
this is not possible in the case of straight lines. we determine a 
straight line by an equation between six quantities with a quadratic 
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equation holding between them. We express this peculiarity of the 
geometry of straight lines by calling it a second order one, whereas 
the geometry of spheres is of the first order.  

The geometry of pairs of points in the plane, with which we will here 
be concerned, is four-dimensional and of the third order (Frege, 1984, 
103).  

To settle between Wilson’s and my understanding of the lecture 
we must understand what exactly is meant by “dimension” and 
“order” in this context. Frege is speaking of ordinary lines and 
spherical surfaces in three dimensional Euclidean space. These are, 
respectively, intuitable as one dimensional and two dimensional 
objects. To call the geometry of these objects four dimensional is to 
say something about the analytic expressions of which they are 
representations, not something about the geometric objects them-
selves.  

Consider the “geometry of straight lines”. Homogeneous co-
ordinates for points in three dimensional projective space ℙ3 have 
the form (x1 : x2 : x3 : x4). A line is determined by two distinct 
points x = (x1 : x2 : x3 : x4) and y=( y1 :y2 : y3 : y4). If there is an a such 
that for each xi we have xi = ayi then x and y are equivalent in ℙ3. 
That is, x and y must be linearly independent if they are to deter-
mine a line. For linear independence, it is sufficient that ∃i, j such 
that xiyj −xjyi ≠ 0.[10] Define pij = xiyj −xjyi. Then pii = 0 and pij = −pji, 
so the sixteen values for pij are completely characterized by the six 
(p12 : p13 : p14 : p34 : p42 : p23). Since pij cannot all be zero if x and y are 
linearly independent, (p12 : p13 : p14 : p34 : p42 : p23) may be regarded as 
a homogeneous coordinate in ℙ5. Furthermore, it can be shown 
that a different choice of initial points x and y will give a result 
differing only by a scalar. This gives an embedding, known as the 
Plücker embedding, of the one dimensional linear subspaces of ℙ3 

into ℙ5.  It can also be shown that  p12 p34 + p13p42 + p14 p23 = 0. This is 
the quadratic expression holding between the six numbers deter-
mining a line that is mentioned by Frege. Consequently, the image 

of the Plücker embedding is a four dimensional surface in ℙ5. Fre-
ge’s lecture applies a generalized technique of Plücker embedding.  

My understanding of Frege’s point of view is that one success 
of analytic geometry consists in obtaining the higher dimensional 
analytic geometries from homogeneous coordinates for perfectly 
intuitable objects in three dimensional space; as I have mentioned, 
I think that, following Gauss, Frege held these intuitive represen-
tations to have heuristic value. In the case of the Plücker embed-
ding, we have seen that a four dimensional “surface” in ℙ5 can be 
interpreted as providing an analytic geometry for lines in the three 
dimensional space that is putatively familiar to intuition. Rather 
than, as Wilson would seem to have it, the coordinates themselves 
providing a mode of representation as syntactic surrogates for 
geometries that are not immediately intuitable, I understand Fre-
ge’s perspective to be that by our understanding of higher dimen-
sional analytic geometry as operating on homogeneous coordi-
nates for intuitable geometric objects we “arrive at [analytic] ge-
ometries of more than three dimensions without leaving the firm 
ground of [synthetic] intuition.”11 I don’t know what sense Wilson, 
on his interpretation, can make of “without leaving the firm 
ground of intuition.” Although I think that the nature of the 
“ground” that Frege supposes to be provided by intuition is am-
biguous at this point (epistemic? semantic? psychological?), as I 
read it, Lecture on the Geometry of Pairs of Points in the Plane does 
not provide textual support for Wilson’s speculations. Wilson’s 
suggestion, to be clear, is not that, according to Frege, geometry 
has no foundation in intuition whatsoever, but that geometric con-
tents given in intuition may recarved in various ways. I am argu-
ing that Frege had a much more conservative view, which is skep-
tical about the introduction of ideal elements. I don’t view Frege 
as having budged from the initial skepticism about, for example, 
points at infinity expressed in his thesis, according to which a lit-
eral point literally at infinity is nonsense. I think that that the 
grounding of geometry in intuition that Frege has in mind privi-
leges a particular way of carving its contents and that this restricts 
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the sort of sense we can make from uses of terms like “point at 
infinity.” That is, the relation of parallelism is privileged over in-
tersection at infinity. If a surrogate for the troublesome “point at 
infinity” is to be found, it should be constructed in the manner of 
von Staudt, and a set of parallel lines is not a geometrical point.  

In fact, Jamie Tappenden has provided direct evidence that 
Frege was enduringly committed to the von Staudt approach. 
Aiming to show that Frege was up to speed on current mathemat-
ics and that his philosophical concerns were continuous with 
methodological debates of his mathematical colleagues, Tap-
penden recounts an exchange between Frege and Pasch:  

In response to the strictures on definition Frege repeated to 
everyone, Pasch in 1903 posed a simple problem that he appears 
to have thought would display the strictures to be unduly harsh: 
define, if you will, points at infinity (Frege, 1980a, 105). The next 
letter from Pasch makes it clear that Frege’s (lost) reply was what 
the reader of (Wilson, 1992) would expect: Frege defines points at 
infinity via the von Staudt method of taking a class of parallel 
lines, just as he has always thought points at infinity should be 
defined (Tappenden, 1995, 344).  

In (Wilson, 2006) the interpretation of (Wilson, 1992) is retract-
ed in favor of one closer to the interpretation based on Plücker 
coordinates that we have been discussing. I contend that Frege 
would not have understood analytic projective geometry in the 
way that is suggested in (Wilson, 2006). Providing coordinates as 
“syntactic surrogates” does not secure a geometric interpretation, 
certainly not one that is rooted in the “firm ground of intuition.” 
Indeed, Frege’s consistent insistence on “direction” over “point at 
infinity” is reason to believe that throughout his career he held to 
the claim made in his thesis that “point at infinity” is, taken literal-
ly, nonsense, and the Grundlagen strategy, based on Basic Law V, 
of defining numbers as class-extensions of concepts is modeled on 
the von Staudt strategy of replacing the synthetic projective geom-
eters’ talk of points at infinity with logical objects.12 

5. Frege and Göttingen  

The most important recent work, to my mind, placing Frege in 
historical and mathematical context has been done by Jamie Tap-
penden. Quite rightly, Tappenden argues that in order to under-
stand the nature of Frege’s foundational project we must reject 
two competing myths. First, Frege cannot simply be understood as 
working on a simple extension the Weierstrassian project of 
arithmetization of analysis, as he was once characterized by Ber-
trand Russell. Tappenden endorses Kitcher’s argument that this 
foundational project was already complete by the late 19th century 
(Tappenden, 2006, 113). Yet, Tappenden does not endorse Kitch-
er’s counter-myth that Frege’s motivations should be seen as dis-
tinctively philosophical, which is to say extra-mathematical. Tap-
penden argues, in particular, that Frege’s work must be situated 
historically with respect to the methodological divide between 
Weierstrass and the Berlin school and Riemann and the Göttingen 
school with respect to foundational issues distinctive to complex 
analysis. He warns:  

It is important to get the history right, both because it is rich and in-
teresting in its own right and for more specific metaphilosophical rea-
sons... [Wrong history] nourishes an unduly meager conception of the 
relations of mathematical and philosophical investigation. If we take 
Frege to be a paradigmatic analytic philosopher, these presumptions 
can support a quietism about philosophy that sees it as rightly disen-
gaged from mathematical practice (Tappenden, 2006, 113-114).  

Tappenden is entirely correct in much of his detailed criticisms of 
both myth and counter-myth, which I will not recount here. Fur-
thermore, he is right in insisting that Frege’s foundational pro-
gram and his philosophy of mathematics is best understood in 
relation to the methodological disputes between the Berlin and 
Göttingen schools. However, I think that Tappenden’s view can be 
refined by more clearly seeing that Frege’s response to the re-
search trends at Göttingen was importantly critical, and seeing 
this reveals the grain of truth in the otherwise over-simplified 
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Russellian myth. In this section I argue that Frege’s views on the 
relationship between arithmetic and geometry suggest a critical 
stance toward the Riemannian program to which Tappenden 
rightly insists we must see him as reacting.  

Indeed, Frege’s view of the relationship between arithmetic 
and geometry can be cast in revealing light by comparison with 
the influential, among Göttingen mathematicians, points of view 
of Herman Grassmann and Bernhard Riemann. Notably, Her-
mann Grassmann generalized the technique of Plücker embed-
ding to linear subspaces of arbitrary rank in vector spaces of arbi-
trary dimension, a critical step in the “far-reaching advances” in 
analytic geometry described by Frege. Grassmann’s work was not 
widely noticed until his son, then a student at Göttingen, deliv-
ered a manuscript to Alfred Clebsch, who along with Hermann 
Hankel was quite impressed and subsequently influenced by 
Grassmann’s ideas (Tobies, 1996, 119). Clebsch, along with 
Hankel, brought Grassmann’s work to a wider audience. Clebsch 
was Frege’s dissertation advisor at Göttingen, and Tappenden 
reports that “Frege was apparently thoroughly familiar” with 
Hankel’s work on complex analysis, which drew inspiration from 
Grassmann’s theory of extension (Tappenden, 1995, 327). The wel-
come reception of Grassmann’s ideas at Göttingen was due to the 
extent to which he anticipated Riemann’s general conception of 
extended manifold embracing geometrical structure in arbitrary 
dimensions, though Grassmann’s studies were restricted to mani-
folds with zero curvature.  

As Tappenden, along with Wilson, has emphasized, Frege may 
be seen to have been responding to methodological and philo-
sophical considerations arising from mathematicians such as 
Plücker, Grassmann, and Riemann. For Frege, however, the gen-
eral theory of extension proposed by Grassmann and Riemann, 
and popular at Göttingen, is subsumed under arithmetic, losing 
any specifically geometric character. This is a crucial point in un-
derstanding the nature of Frege’s logicism and its basis in his view 
of the relationship between arithmetic/analysis and geometry. 

This will provide insight into the order of explanation Frege envi-
sions in mathematics, and helps to clarify the methodological and 
philosophical presuppositions informing his reaction to Hilbert’s 
Grundlagen der Geometrie.  

Briefly, I will consider Grassmann’s ideas in relation to Frege’s. 
Then I will turn to a more extensive discussion of Riemann’s in-
fluence. Grassmann’s 1844 Die lineal Ausdehnungslehre received 
little immediate mathematical attention in part because of the 
dense philosophical introduction that prefaced the mathematical 
development of the theory. Grassmann makes a number of subtle 
philosophical distinctions that, to my satisfaction, have yet to re-
ceive complete and adequate interpretation. 13  The distinctions 
culminate in a division of mathematics into four subdisciplines: (1) 
Number Theory, which is the study algebraic discrete forms, (2) 
Combination Theory, which is the study of combinatorial discrete 
forms, (3) Intensive Magnitude, which is the study of algebraic 
continuous form, and (4) Extensive Magnitude, which is the study 
of combinatorial continuous form. Grassmann’s new discipline, 
linear extension theory, is to correspond to the fourth category. 
Hence the distinction between intensive and extensive magnitude, 
resting on the continuous generation of combinatorial and alge-
braic forms respectively, is of fundamental importance for Grass-
mann’s conception of mathematics. Grassman writes: “The inten-
sive magnitude is thus that arising through generation of equals, 
the extensive magnitude or extension that arising through genera-
tion of the different” (Grassmann, 1844, 27). Here is Grassmann’s 
characterization of the distinction:  

It is thus somewhat as if the intensive magnitude is number become 
fluid, the extensive magnitude combination become fluid. The latter is 
essentially a proceeding of elements mutually apart, retaining them as 
being mutually parted. With it, the generating element appears as 
changing, that is as passing through a variety of states, the collection 
of these various states forming precisely the domain of the extensive 
magnitude. With the intensive magnitude, its generation produces a 
series of states equivalent to itself, whose quantity is precisely the in-
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tensive magnitude. The best example we can offer for the extensive 
magnitude is the line segment (displacement), whose elements pro-
ceed essentially apart from each other and thus constitute precisely 
the line as extension; on the other hand, an example of the intensive 
magnitude is perhaps a point associated with a specific force, since in 
this case the elements are not removed, but rather are presented only 
as an intensity, thus forming a specific order of intensification 
(Grassmann, 1844, 27).  

While for Grassmann the distinction between intensive and exten-
sive magnitude was of basic importance, consider the following 
passage from Frege’s “Review of H. Cohen: Das Prinzip der Infini-
tesimal Methode und sein Geschichte” (1885):  

Now the distinction between intensive and extensive magnitude has 
no sense in pure arithmetic. Nor does it seem to matter anywhere else 
in the whole of mathematics. The number 3 for example can serve as 
the measure of a distance in relation to a unit of length; but it can also 
serve as the measure of an intensive magnitude, e.g., of the intensity 
of a light measured in units of brightness. The calculation in both cas-
es proceeds according to exactly the same laws. The number 3 is 
therefore neither an intensive nor an extensive magnitude but rises 
above this contrast (Frege, 1984, 110).  

Note well that Frege’s comments here take a clear position against 
Grassmann on a crucial point. Although it was the mathematical 
development of linear extension theory which was surely more 
influential with Clebsch and Hankel, the force of Frege’s repudia-
tion of the importance of the distinction suggests to me that he 
was rejecting a distinction that has previously been presented to 
him as important and which he wants to make clear is not, at least 
not for pure arithmetic. Also note that the reason he thinks that the 
distinction is unimportant is that numbers express a generality 
that “rises above” the contrast. The distinction between extensive 
and intensive magnitude may be important for certain applica-
tions, but Frege would resist Grassmann’s attribution of funda-
mental importance to it; this further illustrates the fact that one of 

Frege’s central motivations was to properly capture the nature of 
mathematical generality in his foundational program.  

The interest that Grassmann held for Clebsch and Hankel 
stemmed from their association of his approach to linear extension 
theory with the Riemannian research program. Riemann makes a 
distinction, which is loosely analogous to the distinction between 
extensive and intensive magnitude, between manifolds in which 
measurement is possible and those in which it is not possible. 
When measurement is possible there is “a means of using one 
magnitude as the standard for another” (Riemann, §3). Otherwise, 
only part/whole comparisons are possible. It is inviting to think of 
manifolds in which measurement is possible as fields of extensive 
magnitude and those in which measurement is not possible as 
intensive, but tightening this analogy involves insuperable diffi-
culties that are not worth pursuing presently. In fact, Riemann 
speaks of both manifolds of measurable and non-measurable 
quantities as “extended manifolds” (in Clifford’s translation), and 
importantly treats each geometrically, with the more general geo-
metrical properties applying to the non-measurable case and the 
measurable case determined by the condition that a choice of 
standard units determine coordinates. With an eye toward appli-
cations in function theory, Riemann sets out to understand the 
structure of manifolds through the application of generalized ge-
ometrical concepts. This direction of generalization is pursued by 
Hilbert and criticized by Frege, and it seems important to me to 
stress this point when placing Frege in mathematical context. It 
seems to me that an unarticulated assumption of the epistemology 
of Riemannian mathematics is that extended manifolds adequately 
represent fields of both extensive and intensive quantity, includ-
ing the mixture of the two, and it seems to me that far too little 
philosophical attention has been given to the interplay between 
representation and coneptualization in this tradition.  

The lasting mathematical importance of Riemann’s work con-
sists precisely in this geometric approach to function theory, 
which is in contrast with Weierstrass’ strictly algebraic approach.14 
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Riemann inaugurated both axiomatic/descriptive approaches to 
characterizing geometric and topological properties and construc-
tive approaches to generating examples of manifolds. Erhard 
Scholtz summarizes the importance of Riemann’s foundational 
contribution, as follows:  

Thus Riemann presented an outline of a visionary program of a fami-
ly of geometrical theories, bound together by the manifold concept, 
diversified by different conceptual and technical levels like topology, 
differential geometry, complex geometry, algebraic geometry of mani-
folds, and overarching the whole range from deep inside conceptual 
(“pure”) mathematics to the cognition of physical space and the na-
ture of the constitution and interaction of matter (Scholz, 1999, 27).  

In all of these areas, conceptualization of geometric properties, 
rendering them independent of immediate experience, is indis-
pensable to the Riemannian method. This is not the place to re-
prise all aspects of Riemannian mathematics and its subsequent 
development.15 The point to emphasize is that Frege’s foundation-
al works simply do not address the diverse geometric and topo-
logical conceptions the germs of which are found in Riemann’s 
work.  

Manifolds, for both Grassmann and Riemann, provide a con-
ceptual generalization of the geometric space of empirical intui-
tion. Grassmann had argued that the empirical character of intui-
tive space is shown by its restriction to three dimensions, but ar-
gued that its form could be subsumed in an abstract theory of 
forms generated by the motion of a point through arbitrarily many 
laws of evolution:  

The theory of space may again serve as an example. here the collec-
tion of elements of a plane are generated from a single element to-
gether with two directions when the generating element progresses 
by arbitrary amounts in the two directions, and the totality of points 
(elements) so generated are collected together as a single object. The 
plane is thus the system of second order; in it there is an infinite set of 
directions dependent on those two original directions. If a third inde-
pendent direction is added, then by means of this direction, the whole 

of infinite space (as the system of third order) is produced. In this ex-
ample one cannot proceed beyond three independent directions (evo-
lutionary laws); but in pure extension theory their number can be in-
finitely increased (Grassmann, 1844, 29).  

Riemann concurred (coincidentally, having no knowledge of 
Grassmann), and in considering curvature to be unknown regard-
ed our knowledge of empirical space to be incomplete and ex-
panded the domain of manifolds we may consider abstractly 
(Riemann, intro). Within the Riemannian approach, the theory of 
manifolds was fundamental and demanded a conceptual generali-
zation of the geometrical and topological properties of our space 
of intuition. Grassmann and Riemann, then, have this in common: 
They each viewed classical geometry as an empirical study of a 
particular determination of a general form. Grassmann’s linear 
extension theory and Riemann’s theory of manifolds seek a con-
ceptualization of the properties of empirical space, rendering them 
general forms applicable to arbitrary domains. Thus for them, as 
later for Hilbert but not for Frege, “geometry” came to encompass 
what Kant, dismissed as mere discursive concepts.  

Frege, in contrast, considered geometry to be a specific science, 
restricted by and essentially dependent on intuition, thus incapa-
ble of generalization. His account of generality in mathematics 
was strictly arithmetic. This point is acknowledged by Tappenden, 
but its importance bears further emphasis:  

In addition to the well-known concern for rigour, Frege also states 
that geometric interpretations of the complex numbers ‘introduce for-
eign elements’ into analysis. The view that ‘analysis is infinitely more 
general than geometry’ was a central theme for Frege (as well as De-
dekind) and he took the demonstration of this greater generality to be 
one of his defining objectives (Tappenden, 2006, 124).  

If ‘geometry’ is understood as the study of the space of intuition 
and ‘analysis’ is understood as founded on the general theory of 
manifolds, Frege’s statement does not disagree with the Grass-
mann/Riemann school of thought. However, I think that it should 
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be emphasized that Frege does disagree with the Grass-
man/Riemann school of thought. In particular, for Frege the gen-
erality of analysis derives from its specifically arithmetic character, 
there is no foundational role for a theory of manifolds, and the 
heuristic value of geometric intuition in investigating analytic rela-
tions is tempered by a skeptical concern that the uncritical use of 
intuition may lead us to general conclusions which in fact only 
apply in a restricted class of cases.  

Indeed, I think it is likely that, in criticizing proofs that make 
intuitive leaps and calling for gapless demonstrations, Frege had 
in mind such uses of intuition in analysis as Riemann’s use of the 
Dirichlet Principle. While Tappenden discusses the Dirichlet Prin-
ciple to motivate the conclusion that for those swimming in the 
Göttingen stream the project of factoring logical/analytical con-
tent from geometrical intuition was pressing, I would like to go 
further to suggest that Frege’s position was importantly opposed 
to specific currents in that stream. To be clear, then, I agree with 
Tappenden that we must see Frege in the Riemannian context 
(Tappenden, 2006, 133-136), in particular with respect to the gen-
eral conception of functions, the concern with accounting for ap-
plications, and the methodological problems to which we should 
see Frege as responding, and also that Frege’s writings evince a 
longstanding hostility toward Weierstrass (Tappenden, 2006, 
136137). However, Frege’s opposition to a foundational, essential, 
or ineliminable role for geometrical concepts, and not only intui-
tions, suggests an important departure from the Riemannian pro-
gram as it developed into modern topology.  

The Dirichlet Principle pertains to finding solutions to the 
equation ∆u − f = 0 when f is given. This is known as Poisson’s 
equation. The operator ∆ is called the Laplacian. When applied to 
the function u(x) it yields another function ∆u(x). Roughly, the 
value ∆u(p) at a point p tells you how much u(p) differs from the 
average value of u(x) on surrounding points. To illustrate, in one 
dimension the condition that ∆u(x) = 0, known as Laplace’s equa-
tion, characterizes the class of lines because the center of any in-

terval is equal to the average of its end points. In the one dimen-
sional case, then, the value ∆u(p) at a point p measures how differ-
ent u(x) from a line at p; it measures how curved u(x) is. Beyond 
the one dimensional case, however, matters are little more inter-
esting because the degree to which the surface deviates from a line 
in one direction can be canceled by the degree to which it deviates 
in another direction. Uniquely, the surfaces of harmonic functions 
satisfy this constraint and are the solutions to Laplace’s equation: 
i.e., harmonic functions are the solutions to Poisson’s equation in 
the case f = 0.  

The Dirichlet Principle says that in general a solution to Pois-
son’s equation on a bounded domain with a given boundary con-
dition (i.e., given values that u(x) must take on the boundary) can 
be found by determining a function that minimizes an integral 
which can be defined using the given function f . As the story 
goes, Riemann took for granted that the minimum of this integral 
exists. Weierstrass showed this to be incorrect in general by 
providing a counter-example.16 Jeremy Gray has argued out that 
the story told in these broad strokes obscures important and inter-
esting details, and that, in particular, Riemann himself considered 
conditions on which the minimum exists and was therefore less 
naive than is sometimes supposed; nevertheless, criticisms from 
Riemann’s own student Prym and from Weierstrass and the Berlin 
circle cast serious doubt on the viability of Riemann’s approach 
(Gray, 1994, 50-55).  

Having its origin in applications in potential theory, motiva-
tion for the Dirichlet Principle can be gained from geometrical 
intuition. Roughly speaking, it states that a surface exists with 
minimal area given boundary conditions. One cannot help but 
think of Dirichlet’s Principle in connection with the following pas-
sage from the conclusion of Die Grundlagen der Arithmetik that 
sums up the methodological aim of Frege’s logicist project to elim-
inate gaps in reasoning:  
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A single step is often really a whole compendium, equivalent to sev-
eral simple inferences, and into it there can still creep along with these 
some element from intuition. In proofs as we know them, progress is 
by jumps, which is why the variety of types of inference in mathemat-
ics appears to be so excessively rich; for the bigger the jump, the more 
diverse are the combinations it can represent of simple inferences 
with axioms derived from intuition. Often, nevertheless, the correct-
ness of such a transition is immediately self-evident to us, without our 
ever becoming conscious of the subordinate steps condensed within 
it; whereupon, since it does not obviously conform to any of the rec-
ognized types of logical inference, we are prepared to accept its 
selfevidence forthwith as intuitive, and the conclusion itself as a syn-
thetic truth —and this even when it obviously holds good of much 
more than merely what can be intuited (Frege, 1980b, §90, p. 102e-
103e).  

Sometimes we generalize illicitly, thinking that we are justified 
in doing so by a kind of abstraction, from results which have been 
obtained in a manner that restricts their range of application, and 
in doing so we assert results that may not hold in full generality. It 
seems to be quite likely that Frege would have thought of Rie-
mann’s approach to analysis in connection with this worry, not 
only Dirichlet’s Principle in particular but the entire geometric 
approach to functions based on the topological study of Riemann 
surfaces and the manifold as unifying mathematical object. Fur-
thermore, as the quotation more directly states, in making synthet-
ic leaps when analytic results are possible we fail to gain proofs 
having maximal generality. The variety of proofs of the Funda-
mental Theorem of Algebra, including Gauss’ own production of 
both algebraic and geometric proofs, may also have been on Fre-
ge’s mind, but I suspect also that he is thinking again of Riemann’s 
technique, toward which I interpret his general attitude to have 
been critical if not outright hostile.17 

There are, then, two concerns associated with proofs that use 
synthetic inferences where completely analytic ones are possible. 
The first I call the restriction concern. The worry is that, aware that 
we have used synthetic means, we will obtain a restricted result 

when we feel quite confident that a more general one is true. The 
second concern is the skeptical worry that we will state a general 
result when our means of proof only warrant a restricted one. I 
propose to call this the generalization concern, and as I have been 
suggesting that the application of Dirichlet’s Principle by Riemann 
to general problems in complex analysis seems to be an example 
that Frege would have in mind that illustrates this concern.  

It is noteworthy that the restriction concern is the focus of the 
concluding remarks of Die Grundlagen der Arithmetik, and I will 
return to this noteworthy point shortly, but first I want to make 
clear that the generalization concern is not absent from Frege’s 
mind. In an earlier passage that occurs in the context of a discus-
sion that stems from criticisms of the proposal that arithmetic be 
founded on a theory of aggregation of abstract units, Frege writes:  

Now, a group of points taken together may perhaps fall into some 
pattern or other like a constellation or may equally arrange them-
selves somehow or other on a straight line; and a group of identical 
segments may lie perhaps with their end-points adjacent so as to 
combine into a single segment or perhaps at a distance from one an-
other. Patterns produced n this way can be completely different while 
the number of their elements remains the same. So that here once 
again we should have different distinct fives, sixes, and so forth. 
Points of time, again, are separated by time intervals, long or short, 
equal or unequal. All these are relationships which have absolutely 
nothing to do with number as such. Pervading them all is an element 
of a special nature mixed in with number, an element which number 
in its general form leaves far behind. Even a single moment itself has 
something sui generis, which serves to distinguish it from, say, a point 
of space, and of which there is no trace in the concept of number (Fre-
ge, 1980b, §41 53e-54e).  

Here, the generality concern seems to me to be more salient. The 
passage strongly suggests that we should be concerned that con-
clusions proceeding from properties particular to space or time 
will be illicitly imported into conclusions about number. Frege’s 
comment here recalls the passage highlighted above from the re-
view of Cohen’s work on infinitesimals, in which Frege rejected 
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the relevance of distinguishing kinds of magnitude, and further 
distinguishes the Fregean program of explaining the application of 
arithmetic to geometry by demonstrating the generality of arith-
metic through its exclusive reduction to logic, which is to be con-
trasted with the Grassmann/Riemann approach of generalizing 
geometry itself.  

Frege’s resistance to these Göttingen currents provides im-
portant context for understanding his later resistance to Hilbert’s 
approach to foundations. Frege’s understanding of the deductive 
structure of mathematical knowledge turns fundamentally on his 
view of the generality of arithmetic, to be demonstrated by its re-
duction to logic, and, by contrast, the specificity of geometry. Fre-
ge’s program of factoring the arithmetical content from the geo-
metrical content in mathematics opposed Riemannian mathemat-
ics in the following way. By relying on geometric intuition in 
analysis, for example in Riemann’s illicit use of the Dirichlet prin-
ciple, we proceed from the specific to the general. The error into 
which we are lead, Frege believes, arises because the specific do-
main of geometry instantiates many analytic relations, leading us 
to mistakenly think that those general relations are constituted in 
geometry. We can sum up Frege’s thought neatly (maybe too neat-
ly but informatively nonetheless) in the following way. Weir-
strauss’ algebraic method gains in rigor while losing an account of 
content and applications. Riemann’s geometric development gains 
in content and gives a direct account of a restricted class of appli-
cations, but loses rigor and generality. Fregean higher analysis, 
inspired by Gauss and to be modeled on the Fregean development 
of arithmetic, resolves the difficulties of each approach. This is a 
more complete picture than that given in Russell’s thumbnail 
placement of Frege in the Weierstrassian context, but it should be 
noted that Frege’s concern for rigor indeed marks a point of 
alignment with Weierstrass on a fundamental criticism of the 
Riemannian geometric program. That Frege departs from Weier-
strass on other matters, or aligns with Riemann, is no reason to 
dismiss the point made by Russell as it pertains specifically to 

placing Frege’s work with respect to the historical development of 
mathematics through emerging standards of rigor. Indeed, Frege 
holds precisely that arithmetization is a means of obtaining rigor 
in general results that is absent from those generalizations when 
they are supported only by geometrical reasoning.  

6. Conclusion  

I have tried to make it clear that a central motivation for Frege’s 
foundational program was to establish the greater generality of 
arithmetic and arithmetized analysis by reducing these disciplines, 
but not geometry, to logic. Hence it is essential to Frege’s program 
that his is a restricted logicism, and this establishes a hierarchical 
structure of the mathematical discipline. Frege’s hierarchical un-
derstanding may be contrasted with a more reciprocal relation-
ship, according to which concepts derived from arithmetic repre-
sentations are applicable to geometric structures and vice versa. 
This reciprocal image of mathematics is present, I think, in the 
summary article “Algebraic Geometry” by János Kollar in Timo-
thy Gowers’ Princeton Companion to Mathematics:  

[In] the method of algebraic geometry: a geometric problem is trans-
lated into algebra, where it is readily solvable; conversely, we get in-
sight into algebraic problems by using geometry. It is hard to guess 
the solutions of systems of polynomial equations, but once a corre-
sponding geometric picture is drawn, we start to have a qualitative 
understanding of them. The precise quantitative answer is then pro-
vided by algebra (Kollar, 2008, 363)  

In the practice of mathematics, indeed, we find this reciprocity in 
abundance and applied in diverse circumstance; consider, for ex-
ample, the use of polynomials to represent knots algebraically and 
to identify invariants of knots (Lickorish, 2008, 225). An examina-
tion of mathematical practice reveals a complicated web of interre-
lated qualitative representations and abstract concepts to which 
the Fregean hierarchical image seems inadequate.  
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However, one ought not conclude that Frege’s philosophical 
and foundational concerns are divorced from the mathematical 
developments of his time. In his book Frege: Philosophy of Mathe-
matics, Michael Dummett concludes that “strictly speaking, [Frege] 
did not have a philosophy of mathematics: he never enunciated 
general principles applicable to all branches of mathematics, or to 
all branches save geometry; he never claimed to have more than a 
philosophy of arithmetic” (Dummett, 1991, 292). This is correct to 
a certain extent because Frege is forthright in acknowledging that 
his view of basic arithmetic is the most worked out part of his 
program, but it may tend to mislead the reader into thinking that 
Frege’s program was not motivated by a broader image of the 
subordination of geometry to arithmetic and analysis. Dummett, 
however, is correct to maintain that Frege’s work well articulates 
many of the basic problems of the philosophy of mathematics, to 
which I would add the restriction and generalization problems 
identified in this paper. As these problems arise directly from con-
templation of the controversial aspects of Riemannian mathemat-
ics, we can follow Tappenden in insisting against Kitcher’s as-
sessment that Frege’s program was distant from mathematical 
practice (Kitcher, 1983, 268-269). In my opinion, it’s not that Fre-
ge’s program was distant from mathematical practice, it’s just that 
the hierarchical image that his program embodied was wrong.  

The epistemological problems that I have called the restriction 
problem and the generalization problem, which I have argued 
animated Frege’s research, demand answers: just not, I think, the 
answers given by Frege. Unfortunately for progress on these prob-
lems, philosophers of mathematics have been diverted by other 
concerns arising from Frege’s program and from the era of so-
called “foundational crisis.” Nevertheless, I am of the view that 
mathematical and philosophical research has afforded the tools to 
articulate answers to the restriction and generalization problems, 
and to thereby gain clarity regarding our other philosophical 
problems, based on a local conception of the constitution of math-
ematical objects woven together by relations of structural similari-

ty that have been analyzed by means of logical abstraction. It suf-
fices to conclude this paper with that programmatic suggestion.   
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Notes 

                                                        
1 Much has been made of the influence on Frege of Lotze by Sluga 
in a series of publications beginning in the late 1970s. Sluga’s in-
terpretation was opposed by Michael Dummett. I do not wish to 
enter into this broader debate, and restrict attention to Lotze’s 
views on non-Euclidean geometry and on intuition and their pos-
sible influence on Frege.  
2 Indeed, Lotze was read by Russell and is extensively discussed in 
Russell’s early writings on geometry, which adapted a neo-
Kantian framework to tolerance of spaces of constant curvature. 
The influence of the structuralist strains in Lotze to Russell’s later 
scientific epistemology has not been, to my knowledge, explored. 
3 3An anonymous commentator on an earlier version of this paper 
points out that more original scholarship on Lotze would be nice. 
In particular, it would be nice to say more about how Lotze re-
sponds to concerns about the communicability of subjective con-
tent. I agree; though perhaps this task is best left to one who can 
read German. For my purposes the broad outline provided by 
Torretti ought to suffice. 
4 To assess whether Frege’s understanding of Kant on intuition is 
correct would require a long excursion into Kant.  
5 Quoted from Davis ”Systems of Conics in Kepler’s Work” (Davis, 
1975) 
6 This is, of course, to elide the difficulty whether the relation of 
parallelism, in its Euclidean sense, is directly intuited, which how-
ever seems simply to have been assumed by Frege. 
7 I take sets of whatever kind of object to be non-spatial. There is 
no question of identifying the direction instead with a mereologi-
cal sum of lines, for this would be the entire plane and equivalent 
for all directions. 

 

 
8 Indeed, Frege’s critique of formalism, concerning the adequacy 
of symbolic representation as a guide to arithmetic truth, suggests 
an analogous critique of geometric representation as a guide to 
truths in higher analysis. Moreover, when he criticizes the idea of 
founding arithmetic on a theory of sets of abstract units, this criti-
cism of the abstract theory of discrete manifolds as a basis for 
arithmetic, again suggests an analogous critique of the abstract 
theory of continuous manifolds as a guide to truth in higher anal-
ysis.  
9 (Smart, 1998) provides the textbook presentation of analytic pro-
jective geometry from which I first learned this material. 
10 I.e., that ∃M such det(M) ≠ 0 where M is a 2 × 2 submatirix of the 
4 × 2 matrix with columns x and y.  
11 I have added “[analytic]” and “[synthetic]” to clarify the sense I 
make of Frege’s point of view. 
12 In another paper (Wilson, 2010), Wilson argues that the method 
of introducing terms for points at infinity in Plücker coordinates 
provides an initial model for Frege’s project of introducing num-
bers as logical objects while returning to the thesis of (Wilson, 
1992) that the ideal elements introduced as extensions of geometry 
are to be understood as logical rather than geometrical objects. 
This strikes me as more plausible, and although, as Wilson notes, 
the textual evidence is somewhat thin, this interpretation does 
make sense of some of the vaguely suggestive remarks in Grundla-
gen and the appearance, to some readers, of an abrupt shift of 
strategy in adopting Basic Law V. Yet, because it is important to 
characterizing Frege’s understanding of the relationship between 
arithmetic and geometry and the role of logicism in characterizing 
and explaining this relationship, I think it is important to resist the 
suggestion in (Wilson, 2006) that merely by introducing suitably 
well-behaved “syntactic surrogates” can we vindicate talk of unin-
tuitable geometric objects. 
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13 Though, see (Cantu, 2011) and (Lewis, 2004), especially Cantu’s 
important contribution to which I would offer only modest criti-
cism.  
14 Bottazzini quotes Weierstrass in correspondence with Schwarz 
“The more I think about the principles of function theory —and I 
do so incessantly, the more I am convinced that this must be built 
on the foundation of algebraic truths” (Bottazzini, 1994, 428). 
15 For this, see (Scholz, 1999). 
16 Ultimately, Hilbert determined the conditions under which the 
minimum exists and the principle is applicable.  
17 An anonymous referee suggested mentioning the work of Dede-
kind and Weber toward “logicizing the Riemann-Roch theorem” 
in connection with this point. Dedekind and Weber proceeded by 
eliminating appeal to geometric intuitions of continuity and ex-
pandability, and I think that, based on what I have said, Frege 
would have approved of this approach. The alternative approach, 
which I think Frege did not fully appreciate, would have been to 
provide a logical analysis liscensing the passage from intuitions to 
concepts and ideas (see the Kantian epigraph of Hilbert’s Grundla-
gen der Geometrie). Dedekind and Weber come near this general 
standpoint with their algebraic concept of fields. Hilbert’s 
achievement was to extend this perspective to geometry, and I 
think that this was done in the service of rigorizing, yet more 
closely following, Riemann’s reasoning (as I plan to argue in a 
subsequent paper) rather than taking an eliminative approach. 
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